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A study of multiple kernel learning for pre-
dicting type-1 diabetes from WTCCC ge-

nome wide association studies 
Paras Garg and Usman Roshan 

Abstract— Several recent studies ecent studies of type 1 diabetes prediction from genome wide association studies (GWAS) 
consider only linear relationships between SNPs. With the kernel trick one can examine non-linear relationships using a linear 
classifier such as the support vector machine. However, it isn’t clear in advance which non-linear kernel to employ. Multiple 
kernel learning (MKL) provides one solution by finding the best linear combination of different base kernels each representing a 
different non-linear relationship between SNP genotypes. In this study we set out to explore two questions on the WTCCC type 
1 diabetes GWAS. First, can we predict type 1 diabetes with an MKL kernel better than the traditional linear kernel? Second, 
can we determine the best kernel and the best set of SNPs using MKL coefficients? For the first problem we used a combination 
of linear, polynomial and Gaussian kernels but found no improvement in risk prediction accuracy over the linear one. In the 
second problem we compute linear kernels with different set of SNPs and expected the set with the best accuracy to yield a high 
coefficient. However, this was not the case either. 

Index Terms—Use about four key words or phrases in alphabetical order, separated by commas.  

——————————   u   —————————— 

1 INTRODUCTION
isease risk prediction from genomic data is a corner-
stone problem in medical genetics [1]. Several stud-
ies have examined disease risk prediction mostly 

with logistic regression and significant SNPs selected 
from genome-wide association studies (GWAS) (CITE). 
The general approach has been to first split the GWAS 
subjects into two sets: training and validation. The next 
step is to select SNPs with p-values under some threshold 
on just the training data, learn a model on the training 
data such as logistic regression, and predict case and con-
trol status on the validation data.  Other studies have re-
placed the second step with other classifiers such as sup-
port vector machine (CITE).  
    The common thread in these studies is that the classifi-
ers are linear and so they assume a linear relationship 
between the SNPs. We want to know if utilizing non-
linear relationships will lead to higher accuracies. Instead 
of applying non-linear classifiers that are usually compu-
tationally expensive we consider higher dimensional fea-
ture spaces that measure non-linearity between SNPs. 
Fortunately we can do this without having to explicitly 
compute the new feature space. This is called the kernel 
trick. We rely on the fact that linear classifiers use the dot 
product for classification. As long as we can compute the 
dot product in the higher dimensional space we can build 
a model in that space and classify case and control there. 
Kernels allow us to compute dot products in such higher 
spaces (CITE). 
    However, it’s not clear in advance which kernel to em-
ploy. Multiple kernel learning (MKL) provides one solu-

tion by finding the linear combination of a specified set of 
kernels that yields that largest support vector machine 
margin (CITE). To apply MKL for predicting type 1 diabe-
tes we first rank SNPs in the training set according to chi-
square (2-df test) p-values. We select the top 1000, com-
pute different kernels with different SNP sets, learn the 
best linear combination of the kernels along with the SVM 
margin, and then predict case and control in the valida-
tion set with the new kernel. 

In this paper we want to answer two particular ques-
tions.  

1. Can MKL produce a kernel that has significantly 
higher prediction accuracy than the base kernels? 

2. Can MKL be used to identify the most significant 
features/models based on the weights? 

 
We show that the prediction accuracy with the MKL ker-
nel is about the same as the linear. We don’t see a correla-
tion between the kernel with the highest accuracy and the 
MKL one.  

2 METHODS 
Dataset. For this study we consider the Wellcome 

Trust Case Control Consortium (WTCCC) type 1 diabetes 
GWAS (CITE). After following standard quality control 
steps it contains 1924 case subjects, 2938 controls, and 
402532 SNPs.  

We used the same method for filtering the SNPs that 
where regarded problematic by the WTCCC. This left us 
with 1480 individual from British Birth Cohort, 1458 from 
UK Blood Service Control Group and 1963 cases for type 
1 diabetes with 422,006 SNPs. This dataset was converted 
to encoded matrix of 0, 1 and 2’s by standard encoding 
(Price et. al). In our case, 0, 1 and 2 represents two, one 
and zero copies of risk alleles. 
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Raw data 

A/T C/T C/G A/C C/G 
AA TT CG CC GG 
AT TT CG CC GG 
TT CT GG AC CC 
TT TT GG AA CC 

 
Numerical conversion according to the copies of risk alleles 

A/T C/T C/G A/C C/G 
0 2 1 2 2 
1 2 1 2 2 
2 1 2 1 0 
2 2 2 0 0 

 
Chi Square ranking 

C/G A/T A/C C/G C/T 
2 0 2 1 2 
2 1 2 1 2 
0 2 1 2 1 
0 2 0 2 2 

 
Linear kernel  

Each cell represents the dot product of two vectors 
 Case 1 Case 2 Control 1 Control 2 

Case 1 13 13 6 6 
Case 2 13 14 8 8 

Control 
1 

6 8 10 10 

Control 
2 

6 8 10 12 

 
Multiple Kernel Learning 

Example to illustrate conversion of genome-wide association study 
to numerical format and the linear kernel.  

Base Kernels. For MKL we used three standard kernel 
functions: Linear, Polynomial (Degree=1, 2) and Gaussian 
( =1.2, 2, 5). 
 
Linear Kernel:  
Polynomial Kernel: 
(d = 1, 2) 
Gaussian Kernel: 
( =1.2, 2, 5) 

Implementation. We implemented our own C pro-
gram for ranking SNPs by chi-square. After ranking the 
according to their p value, we selected top 1000 X2 ranked 
SNPs for our analysis. We used the command line im-
plementation of MKL that is available at 
http://www.shogun-toolbox.org/. We generated several 
base kernels each with the top 20, 40, 60, 80, 100, 200, 400, 
600, 800 and 1000 X2 ranked SNPs. Each of the kernels 
was normalized. We used Perl scripts for normalization, 
general formatting and data selection. 

3 RESULTS 
We randomly select 90% of the total subjects in the 
WTCCC type 1 diabetes GWAS for training and leave the 
remainder for validation. We generate 10 such random 
splits. 

3.1 MKL and SVMlight 
When just the linear kernel is used the MKL problem re-
duces to original SVM dual (Sonnenburg, 2006). We veri-
fy this on our data with different SNP sets and use the 
SVM-light software package for computing the SVM. We 
tested Shogun MKL with single kernel at c=1, 0.001.  
For consistency, we used un-normalized linear kernels for 
both the methods. It is demonstrated that the results of 
MKL with K=1 are consistent at different number of fea-
tures (SNPs). The small variation (~ +0.02) in the accura-
cies in two methods can be explained by the fact that 
Shogun MKL uses SLIP to solve the quadratic dual prob-
lem and this also makes MKL slower than SVMlight. The 
best performance was achieved at C=1 and features=400 
by both the methods. (Table ) 

3.2 Comparison of Standard Kernels 
We compared the results of three standard kernels with 
different parameters: Linear, Polynomial (d=2,3) and 
Gaussian (γ= 1.2, 2, 5). The regularization parameter C 
was set 1 for all the cases. These standard kernels were 
compared with different number of features: 20, 40, 60, 
80, 100, 200, 400, 600, 800, 1000 (Table 3.1 and fig 3.1).  The 
comparison of these standard kernels shows that linear 
kernel performs better than other kernels. Linear kernel 
achieves classification accuracy of 78.84% with 20 features 
and 81.28% with 400 features. Polynomial kernel (d=2,3) 
showed lower performance with lesser number of fea-
tures (<200), however showed a great improvement with 
higher number of features. On the other hand, RBF kernel 
produced classification accuracy ~75% with  20 features, 
however it decreases with the increase in number of fea-
tures. It reaches its minimum of 59.88%. It can be ex-
plained by that fact that the discriminant value shows 
that all the data points in new feature space are one side 
of the hyperplane. 

3.3 MKL Performance 
In this section, we examine the first objective and expect 
MKL to learn a classifier better than the individual ker-
nels. We divided the experiment in two parts: 

1. MKL with various standard kernels as base ker-
nels 

2. MKL with various numbers of features as base 
kernels 

MKL with various standard kernels as base kernels. 
In this case, we used linear, polynomial (d=2,3) and rbf 
(γ=1.2, 2, 5) as the base kernel for multiple kernel learn-
ing. As suggested by Sonnenburg et al, we normalized all 
the kernels for data stability. Table 3.2 shows the result of 
MKL compared with the linear kernel for different num-
ber of features. On an average, MKL performed lower 
than the linear kernel with a difference of ~0.59%. Only 
when # of features = 20, MKL showed improvement over 
linear kernel. In all other features, linear kernel had high-
er classification accuracy.  

MKL with various number of features as base ker-
nels. We learned linear kernel with various number of 
features and used them as base kernels for MKL. The re-
sults are compared with normalized as well as un-

Cas-
es 

Con-
trols 

Cas-
es 

Con-
trols 
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normalized kernels and at C=1, 0.001 (Table 3.3 and Fig-
ure 3.2). When un-normalized kernels were used with 
MKL, it performed equal to linear kernel with 1000 fea-
tures at C=1, 0.001. We achieved highest performance 
with 20 features which was better than MKL. With nor-
malized kernels at C=1, MKL performs slightly better 
than its base kernels with an improvement of 0.04% over 
the linear kernel with 400 features. When C=0.001 was 
used, the accuracies of all the base kernels were 59.87%. 
This is probably because normalization brings all the data 
points to a unit sphere, losing much of the information 
(see Section ). 

3.4 Feature and Model Selection  
In this section, we examine the second objective, to ana-
lyze the weights β assigned by MKL to its base kernels 
and its possible application for feature and model selec-
tion. with various numbers of features as base kernels. A 
similar study was conducted by Suard et.al. (2007), where 
they used MKL for pattern recognition using various rep-
resentations of image such as pixel value, gradient norm, 
wavelet and histograms of gradients. They concluded that 
MKL provide higher weight to the most important repre-
sentation. 

Weights β & Model Selection. We obtained the 
weights assigned by MKL to the standard kernels when 
we use them as base kernels (Table 3.4). We produced the 
results for various numbers of features. In most of the 
cases, MKL assigns higher weight to RBF kernel while 
lowest weight to linear kernel. Individually, RBF kernel 
performs the least while linear kernel has best classifica-
tion accuracy among other models. This proves that MKL 
can not be used for feature selection. 

Weights β & Feature Selection. In this case, we used 
linear kernels with various number of features and ap-
plied MKL on them. The C was equal to 1 and 0.001 and 
normalized as well as normalized kernels have been 
compared. The weights obtained from MKL have been 
shown in Table. When un-normalized kernels are used, 
MKL assigns weight 1 to kernel with features=1000 while 
weight 0 to all other kernels. Comparing with individual 
kernel (Table 3.5), 1000 features kernel has the least classi-
fication accuracy; still it received the highest weight. With 
other combination of features as base kernel, MKL always 
provided highest weight to kernel learned from highest 
number of features. Even normalization did not change 
the weight distribution by much. 1000 feature kernel still 
received the highest weight. 

Figure 3.1 Comparison of various models with increasing 
number of features (SNPs).  

 

4 CONCLUSION 
We have applied MKL to SNP genotype for type-1 di-
abetes risk prediction. We found that MKL has its limi-
tations in providing better prediction accuracy than 
the base kernels. One of the caveats with MKL is that 
for solving the objective function, the base kernels 
have to be normalized. The normalization of the ker-
nels brings all the data points on a unit scale, losing 
“information” that may be useful for classification. 
With un-normalized kernels, we have shown that MKL 
gives high weighage to kernel with highest dimen-
stions.  
        Other cavet of MKL is the choice of base kernels. 
MKL highly depends on the base kernels and choice of 
standard kernels is difficult to make. We tried stand-
ard kernels that are most often used in pattern recogni-
tion.  
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Table 3.1 MKL (K=1) vs SVMlight. Comarpison of MKL (one base kernel) and SVMlight at C=1,0.001 
for 20, 40, 60, 80…1000 SNPs 
Method C 20 40 60 80 100 200 400 600 800 1000 
SVMlight  
linear 1 78.84 79.00 79.25 79.74 79.96 81.26 81.28 80.00 78.58 76.27 

MKL Linear 
Unnormalized 1 78.84 79.02 79.29 79.80 80.02 81.22 81.32 80.43 78.58 76.27 

SVM light 
linear 0.001 77.15 77.78 77.80 78.27 78.43 79.76 80.92 81.16 80.98 80.47 

MKL Linear 
Unnormalized 0.001 77.15 77.78 77.80 78.27 78.45 79.74 80.92 81.16 80.96 80.47 

  
Table 3.2 Prediction Accuracies for Various Models and Features (SNPs) 
Model 
/SNPs 20 40 60 80 100 200 400 600 800 1000 
Linear 78.84% 79.00% 79.25% 79.74% 79.96% 81.26% 81.28% 80.00% 78.58% 76.27% 
Poly 
(d=2) 71.65% 48.76% 55.85% 56.50% 56.13% 71.69% 75.97% 76.48% 77.05% 77.19% 
Poly 
(d=3) 42.28% 53.22% 52.99% 55.95% 55.62% 72.40% 76.62% 77.33% 77.15% 77.62% 
RBF 
(γ=1.2) 77.68% 71.94% 70.12% 67.46% 63.12% 60.06% 59.88% 59.88% 59.88% 59.88% 
RBF (γ=2) 75.56% 69.69% 67.68% 65.30% 61.57% 59.92% 59.88% 59.88% 59.88% 59.88% 
RBF (γ=5) 75.23% 69.37% 67.33% 64.91% 61.42% 59.92% 59.88% 59.88% 59.88% 59.88% 
 
Table 3.3  Comparison MKL with Linear, Polynomial and Gaussian (RBF) as Base Kernel to Linear 
Normalized Kernel 
KMKL = β1KLinear +  β2Kpolyd2 +  β3Kpolyd3 +  β4KRBF1.2 +  β5KRBF2  +  β6KRBF5 
Model/SNPs 20 40 60 80 100 200 400 600 800 1000 
MKL 79.47 78.49 78.53 78.68 78.72 79.63 80.14 80.53 80.53 79.84 
Linear Normalized 78.68 79.33 79.43 79.47 79.71 80.43 81.32 81.12 80.57 80.37 
 
Table 3.4  Comparison of MKL with various number features to individual linear kernels (Normalized 
& un-normalized).  
KMKL = β1K20 +  β2K40 +  β3K60 +  β4K80 +  β5K100 +  β6K200 +  β7K400 +  β8K600 +  β9K800 +  β10K1000 
Model C 20 40 60 80 100 200 400 600 800 1000 MKL 
Linear 
 Unnormal-
ized 

1 78.84 79.02 79.29 79.80 80.02 81.22 81.32 80.43 78.58 76.27 76.27 

Linear  
Normalized 1 78.68 79.33 79.43 79.47 79.71 80.43 81.32 81.12 80.57 80.37 81.36 

Linear  
Unnormalized 0.001 77.15 77.78 77.80 78.27 78.45 79.74 80.92 81.16 80.96 80.47 80.47 

Linear  
Normalized 0.001 59.87 59.87 59.87 59.87 59.87 59.87 59.87 59.87 59.87 59.87 59.87 

 
Table 3.5 Weights β from MKL with Various Models as Base Kernel 
KMKL = β1KLinear +  β2Kpolyd2 +  β3Kpolyd3 +  β4KRBF1.2 +  β5KRBF2  +  β6KRBF5 

SNPs/Models β1 

Linear 

β2 

Poly 
(d=2) 

β3 
Poly (d=3) 

β4 
RBF ( γ=1.2) 

β5 
RBF ( γ=2) 

β6 
RBF (γ=5) 

20 0 0 0.044768 0.921149 0 0.034082 
40 0 0 0.066979 0.847248 3.2E-06 0.085769 
60 0 0 0.078481 0.791593 7.72E-05 0.129849 
80 0 0 0.083845 0.696262 0.000198 0.219695 
100 0 0 0.100046 0.613535 0.000432 0.285987 
200 0	 8.89E-07	 0.134695	 0.388294	 0.004594	 0.472415	
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400 6.67E-07	 1.78E-06	 0.167613	 0.271271	 0.275391	 0.285722	
600 3.33E-07	 1.11E-06	 0.18945	 0.266188	 0.269227	 0.275135	
800 2.22E-07	 1.11E-06	 0.221311	 0.256693	 0.257779	 0.264216	
1000 1.11E-07	 8.89E-07	 0.255235	 0.246111	 0.246715	 0.251938	
  
Table 3.6  Weights β from MKL with various features (SNP) as base kernel 
KMKL = β1K20 +  β2K40 +  β3K60 +  β4K80 +  β5K100 +  β6K200 +  β7K400 +  β8K600 +  β9K800 +  β10K1000 

Model/SNPs C 20 40 60 80 100 200 400 600 800 1000 
Linear  
Unnormalized 1 0 0 0 0 0 0 0 0 0 1 
Linear 
 Normalized 1 0.21076 0.021115 0 1.50E-06 0.004116 3.70E-06 0 0 0 0.764003 
Linear  
Unnormalized 0.001 0 0 0 0 0 0 0 0 0 1 
Linear  
Normalized 0.001 0.566349 0.24646 0.16797 0.016291 0.002712 7.12E-05 4.31E-05 3.73E-05 3.39E-05 3.23E-05 
 

Figure 3.2 a) Comparision of MKL and linear kernel with C=1 

 
Figure 3.2 b) Comparision of MKL and linear kernel with C=0.001 

 


