1. Algorithms

1.1. Stochastic coordinate descent

Algorithm 1 Stochastic coordinate descent

Input: Data (feature vectors) \(x_i \in \mathbb{R}^d \) with labels \(y_i \in \{+1, -1\} \), number of votes \(rr \in \mathbb{N} \) (Natural numbers), number of iterations per vote \(it \in \mathbb{N} \) (Natural numbers), batch size as a percent of training data \(p \in [0, 1] \) (set to 0.75 by default), and \(w_{inc} \in \mathbb{R} \) (set to 0.17 by default)

Output: Total of \(rr \) pairs of \((\text{best}w \in \mathbb{R}^d, \text{best}w_0 \in \mathbb{R})\) after each vote

Procedure:

1. Set \(j = 0 \)
2. While \(j < rr \) do
 1. Set \(\text{best}w = \text{null}, \text{best}w_0 = \text{null}, \text{bestloss} = \infty \)
 2. For \(i = 0 \) to \(it \) do
 1. Randomly pick \(p \) percent of rows as input training data to the coordinate descent algorithm and run it to completion starting with the values of \(w \) and \(w_0 \) from the previous call to it (if \(i == 0 \) we set \(w = \text{null}, w_0 = \text{null} \)).
 2. In the next step we calculate objectives on the full input training set
 1. If \(\text{objective}(w, w_0) < \text{objective}(\text{best}w, \text{best}w_0) \) then
 1. Set \(\text{best}w = w \), \(\text{best}w_0 = w_0 \), and \(\text{bestloss} = \text{objective}(w, w_0) \)
 end if
 end for
3. Output \(\text{best}w \) and \(\text{best}w_0 \)
4. Set \(j = j + 1 \).
end while

We output all \((\text{best}w, \text{best}w_0)\) pairs across the votes. We can use the pair with the lowest objective or the majority vote of all pairs for prediction.

1.2. Optimal threshold \(w_0 \) and 01 loss

Algorithm 2 Opt

Input: \(w^T x_i \in \mathbb{R}^d \) for \(i = 0..n-1 \) with labels \(y_i \in \{+1, -1\}, \text{start}, \text{end} \)

Output: Optimal \(w_0 \in \mathbb{R} \) with minimum (balanced) 01 loss and the loss value \(\text{obj} \)

Procedure:

1. For \(i = \text{start} \) to \(\text{end} - 1 \) do
2. Set \(w_0' = w^T x_i + w^T x_{i+1} \)
3. If \(y_i(w^T x_i + w_0') == 0 \) then
 1. If \(y_i == 1 \) then errorplus++
 end if
4. Else if \(y_i(w^T x_i + w_0') > 0 \) then
 1. If \(y_i == 1 \) then errorplus++ else errorminus--
 end if
5. Else if \(y_i(w^T x_i + w_0') < 0 \) then
 1. If \(y_i == 1 \) then errorplus++ else errorminus++
 end if
6. If \(\text{errorplus} + \text{errorminus} < \text{obj} \) is lower than current best objective \(\text{obj} \) then \(\text{obj} = \text{obj}' \) and \(w_0 = w_0' \).
7. End if
8. End for
9. Return \((w_0, \text{obj})\)

\(^1\)Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, USA. Correspondence to: Usman Roshan <usman@njit.edu>.

Supplementary Material for "Robust binary classification with the 01 loss"

Yunzhe Xue \(^1\) Meiyan Xie \(^1\) Usman Roshan \(^1\)
1.3. Black box adversarial attacks

Algorithm 3

Input: Model M to be attacked, adversarial attacker B, λ and ϵ that determine amount of adversarial perturbation in each sample where λ is used in training the substitute model and ϵ is to generate adversaries to attack the target model, data $x_i \in \mathbb{R}^d$ with labels $y_i \in \{+1, -1\}$, number of epochs $ep \in \mathbb{N}$ (Natural numbers)

Procedure:

Set the initial data $D = \{x_i\}$ as 200 random samples from the test dataset.

for $i = 0$ to ep do

1. Obtain predictions y'_i of D from black box model M
2. Set adversarial training data A to be $D = \{x_i, y'_i\}$
3. Train attacker B with A as input training data
4. With B’s gradient we produce adversarial examples as augmented data to train the substitute with the step below.
5. For each sample a_i in A create adversary $a_i = a_i \pm \lambda \text{sign}(\nabla f)$ where ∇f is the gradient of B and λ is given in the input. We randomly decide to add or subtract λ by a coin flip and found this trick to improve the substitute model test accuracy and produce more effective adversarial examples.
6. Add new adversarial samples $\{a_i\}$ to D. This doubles the number of adversarial samples after each iteration.

end for

Now that our attacked B is trained we produced adversaries for the remaining test datapoints. For each datapoint x in the test dataset minus the 200 selected initially to train the substitute we produce adversaries using $x' = x + \epsilon \text{sign}(\nabla f)$ as in step 5 above but now we use ϵ instead of λ. We now test the accuracy of the target model M with the newly generated adversaries.

In the above procedure we set $\lambda = 0.1$ for MNIST and CIFAR10 and $\lambda = 0.01$ for STL10 and ImageNet since these values produce the most effective attack. We use different values of ϵ that we show in the main paper and in this Supplementary Material below.

2. Results

2.1. CIFAR10, STL10, and ImageNet lower ϵ values

![Accuracy of adversarial samples generated at each epoch during substitute model training on CIFAR10, STL10, and ImageNet. At epoch 0 we have the accuracy of the target model on clean test data (without adversaries) as shown in the tables.](image)
2.2. MNIST lower ϵ values

Figure 2. Accuracy of adversarial samples on MNIST lower ϵ values (see Figure 2 caption for more)

<table>
<thead>
<tr>
<th>Epoch</th>
<th>SCD01majvote</th>
<th>SVM</th>
<th>MLP01majvote</th>
<th>MLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>.7</td>
<td>.79</td>
<td>.8</td>
<td>.91</td>
</tr>
</tbody>
</table>

2.3. Comparison to prior work

Figure 3. Accuracy of adversarial samples of the previous stochastic coordinate descent 01 loss solver and our SCD01
2.4. GTSRB and CelebA lower ϵ values

![Diagram of GTSRB eps=0.015625](image)

<table>
<thead>
<tr>
<th>Epoch</th>
<th>MLP01majvote</th>
<th>SVM</th>
<th>MLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.98</td>
<td>.99</td>
<td>.98</td>
</tr>
<tr>
<td>20</td>
<td>.71</td>
<td>.65</td>
<td>.66</td>
</tr>
</tbody>
</table>

![Diagram of CelebA eps=0.03125](image)

<table>
<thead>
<tr>
<th>Epoch</th>
<th>MLP01majvote</th>
<th>SVM</th>
<th>MLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.79</td>
<td>.76</td>
<td>.78</td>
</tr>
<tr>
<td>20</td>
<td>.58</td>
<td>.14</td>
<td>.2</td>
</tr>
</tbody>
</table>

Figure 4. Accuracy of adversarial samples on GTSRB and CelebA (see Figure 2 caption for more)