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Abstract—The ranking of SNPs and prediction of phenotypes
in continuous genome wide association studies is a subject of
increasing interest with applications in personalized medicine
and animal and plant breeding. The ranking of SNPs in case
control (discrete label) genome wide association studies has been
examined in several previous studies with machine learning
techniques but this is poorly explored for studies with quantitative
labels. Here we study ranking of SNPs in mouse, fly, and rice
continuous genome wide association studies given by the popular
univariate Pearson correlation coefficient and the multivariate
support vector regression and ridge regression. We perform
cross-validation with the support vector regression and ridge
regression models on top ranked SNPs and compute correlation
coefficients between true and predicted phenotypes. Our results
show that ridge regression prediction with top ranked support
vector regression SNPs gives the highest accuracy. On all datasets
we achieve accuracies comparable to previously published values
but with fewer SNPs. Our work shows we can learn parsimonious
SNP models for predicting continuous labels in genome wide
studies.
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I. INTRODUCTION

The prediction of continous phenotypes has applications
in breeding, farming, and medicine [1], [2]. Recent studies
propose novel statistical methods to predict quantitative pheno-
type values in genome-wide association studies [3], [4]. Plenty
of such work has been done in case control genome wide
association studies in the context of disease prediction [5], [6],
[7], [8], [9], [10], [11], [12], [13], [14]. There we have seen
standard machine learning methods employed in clever ways
to boost prediction accuracy.

In this paper we explore standard feature selection tech-
niques [15] and two regularized risk regression methods [16]
that are popular in the machine learning literature to rank
SNPs and predict regression values in three genome wide
association studies. Our work is different from previous feature
selection studies in that we study datasets with continuous
labels (regression data). In contrast previous feature selection
studies focus exclusively on classification data [17], [18], [19],
[20], [21], [15].

Our results show that we can predict quantitative pheno-
types from a parsimonious set of SNPs instead of using tens
and hundreds of thousands. We achieve comparable or higher
accuracy than previously published work by rankings SNPs
with the support vector regression and predicting phenotype
values with the ridge regression [22].

II. METHODS

We use the univariate Pearson correlation coefficient for
ranking features. We also use support vector regression and
ridge regression to rank features as well as to learn a model
from training data and predict regression values of validation
or test data.

A. Pearson correlation coefficient

The Pearson correlation coefficient is given by∑n
i (xi,j − xi,mean)(yi − ymean)√∑n

i (xi,j − xi,mean)2
√∑n

i (yi − ymean)2
(1)

where xi,j represents the encoded value of the jth variant
in the ith individual and yi is the label (+1 for case and -1 for
control) of the ith individual. The Pearson correlation ranges
between +1 and -1 where the extremes denote perfect linear
correlation and 0 indicates none. We rank the features by the
absolute value of the Pearson correlation.

B. Support vector regression

We use the support vector regression (SVR) method [23]
implemented in the SVM-light program [24]. SVR is a linear
regression method that solves

argminw,w0
C 1

n

∑
i max(0, yi − (wTxi + w0)− ε) + ||w||2

where xi represents the ith individual and yi is the phe-
notype target value. For all experiments we use the default

regularization parameter given by C =
1∑

i x
T
i xi

where n are

the number of vectors in the input training (case and control



individuals in this study) and xi is the feature vector of the
ith individual [24]. In other words we set C to the inverse of
the average squared length of feature vectors in the data.

C. Ridge regression

Linear regression is perhaps the most popular method for
solving regression problems. We use its regularized version
called ridge regression [22]. This is known to alleviate prob-
lems associated with matrix inversion in linear regression and
is also less prone to overfitting thanks to regularization. It finds
a linear solution to the problem

argminw,w0

1
n

∑
i(yi − (wTxi + w0))

2 + λ||w||2

where xi represents the ith individual and yi is the phe-
notype target value. We use a recently proposed method to
automatically set λ [25] and the R package Ridge to run this
method.

D. Multivariate feature ranking

We rank features with the above two methods using a
simple popular procedure. We first learn a model on the
training data and this gives us a w and w0. We then rank
features by the absolute value of the entries in w.

E. Experimental procedure

Our experimental procedure begins with a numeric format
genome wide association study (GWAS) as input. A GWAS
is a matrix of single nucleotide polymorphisms (SNP) where
each SNP is given by a string of two letters each taking on
the values A, C, G, and T. We convert each SNP into ‘0’, ‘1’,
and ‘2’ to represent the number of copies of the allele with
the larger alphabet value [8], [26]. In the numeric format the
GWAS is given by an n by m matrix of characters taking on
the values ’0’, ’1’, and ’2’ where n is the number of subjects
and m is the number of SNPs. In Figure 1 we show a simple
GWAS of four subjects and three SNPs and its numeric format.

	
  

A/C  C/T  A/T     
 
AA   CC   AA         convert to             0  0  0 
AA   CT   AA         numeric format     0  1  0 
AC   TT    AT         =======!         1  2  1 
CC   CT    AA                                      2  1  0 

Fig. 1. Toy example of a genome-wide association study and its numeric
encoded format

1) For each GWAS we create ten random splits of train-
ing and validation datasets. We do this by randomly
selecting 90% of the rows for training and leave the
remaining for validation. For the fly dataset, however,
we select 80% of the rows instead so that we can
compare our results to previously published 5-fold
cross-validation.

2) For each training dataset we rank SNPs with the
Pearson correlation coefficient, the support vector
regression, and ridge regression.

3) For each ranking above we consider top ranked SNPs
in increments. For each set of top ranked SNPs we

learn a support vector regression and ridge regression
model and predict regression values in the validation
dataset. After prediction we compute the correlation
coefficient between true and predicted values.

4) We repeat the above two steps for each of the 10
training datasets and compute an average. We then
plot the average correlation coefficient for different
number of top ranked SNPs and combinations of
feature ranking and prediction method.

F. Datasets

We consider three continuous label genome-wide associa-
tion studies for our study. For each dataset we eliminate all
SNPs with missing entries.

• Mouse: [3] The mouse GWAS contains 12545 SNPs
from 1940 mice across 20 chromosomes and is made
publicly available by Welcome Trust Centre for Hu-
man Genetics. It can be accessed from http://mus.well.
ox.ac.uk/mouse/HS/.

• Fly: [4] The fly GWAS contains 2.5 million
SNPs from 155 Drosophila Genetic Reference Panel
(DGRP)-lines on the Illumina platform.

• Rice: [27] The rice GWAS contains 36901 SNPs
from 413 rice plants (across 82 countries) across
12 chromosomes and is made publicly available by
Rice Diversity Panel. It can be accessed from http:
//ricediversity.org/data/sets/44kgwas/.

G. Measure of accuracy

Since we are computing regression values we measure
accuracy with the correlation coefficient. This has the same
formula as the Pearson correlation coefficient. A value of 1
indicates perfect correlation of predicted and true values, 0
means none, and -1 indicates a negative correlation. A value
close to 1 indicates high accuracy.

III. RESULTS

We begin with our results on the mouse genome wide
dataset where we study all six combinations of Pearson and
two multivariate rankings against the two prediction methods.
Following that we present results on the two remaining datasets
focusing on the better of the two multivariate rankings and the
univariate one.

A. Mouse

We consider two phenotypes that were also previously
studied in this dataset [3]: the percentage of CD8 cells (CD8)
and mean cellular haemoglobin (MCH). In Figure 2 we make
several observations. First, for a fixed classifier the multivariate
rankings achieve a higher prediction accuracy than the Pearson
correlation coefficient with much fewer SNPs. For example in
the CD8 phenotype with the top 500 Pearson ranked SNPs the
ridge regression method has a correlation coefficient of 0.63.
However, with the ridge regression ranking the same classifier
reaches about 0.7.

Second, we see that the ridge regression method gives
higher accuracies than support vector regression. This may



be due to the fact the ridge regression method of setting the
regularizer gives a better regression model than the support
vector regression default value. Upto the top 900 ranked SNPs
both methods give similar correlation coefficients but with all
SNPs in the model the ridge regression attains a much higher
value.

Fig. 2. Mean correlation coefficients of predicting mouse CD8% phenotype
shown as a function of top ranked SNPs. Each curve legend contains the SNP
ranking method followed by the phenotype prediction method.

In the mean haemoglobin phenotype we see a more pro-
nounced difference between the Pearson ranking and the two
multivariate ones (see Figure 3). Both multivariate rankings
achieve high (and similar) accuracies very early on in the
SNP rankings. Even with all SNPs the difference in accuracy
between ridge and support vector regression is about 0.1.

Fig. 3. Mean correlation coefficients of predicting mouse MCH phenotype
shown as a function of top ranked SNPs. See Figure 2 caption for more details.

Compared to previously published values under 90:10 cross
validation studies (published in [3]) our correlation coefficients
are similar for CD8 and higher for MCH. For CD8 the original
study of the paper reported an accuracy of 0.73. We reach
the same accuracy with the ridge regression applied to the
support vector regression ranking of SNPs. However, our peak
is with 4000 SNPs whereas the original study does not list the
number of SNPs. (We assume all SNPs were used for their
model.) The original paper also reports an accuracy of 0.61 for
MCH whereas we reach a peak accuracy of 0.64 with the ridge
regression applied to top 3000 support vector regression ranked
SNPs (the same combination that was optimal for CD8).

Of the two multivariate rankings we see that support vector
regression works better for both phenotypes. Therefore we
omit the ridge regression ranking going forward.

B. Fly

The fly dataset contains 2.5 million SNPs and this presents
a challenge for multivariate classifiers. For such high dimen-
sion multivariate classifiers give a poor ranking and prediction
with genome wide SNP data [8]. Therefore we consider just
the top 200,000 SNPs in the Pearson ranking and re-rank them
with the support vector regression. In Figure 4 we see that
upto the top 3000 SNPs the multivariate ranking gives higher
accuracies. The ridge regression, however, yields a higher
accuracy than the support vector regression.

In the original study of this dataset the authors use addi-
tional non-genomic information to predict phenotype. With just
SNP data we reach an accuracy of 0.33 whereas the original
study report 0.23.

Fig. 4. Mean correlation coefficients of predicting fly startle response shown
as a function of top ranked SNPs. See Figure 2 caption for more details.

C. Rice

We study several phenotypes in the rice dataset [27]. We
see similar trends that we observed in the above datasets
(see Figure 5). Within the top 500 SNPs the support vector
regression ranking gives higher prediction accuracies than the
Pearson one. For phenotype prediction the ridge regression
gives higher accuracies than support vector regression. The
blue curve that denotes the ridge regression applied to the
support vector regression ranking of SNPs usually attains its
highest accuracy before it crosses 10,000 SNPs. The number
of SNPs where the peak prediction accuracy is reached and
the peak prediction accuracy differ from one phenotype to the
next.

In the original study of this dataset the authors do not study
phenotype prediction. The original study aims to discover and
study (significant) genetic variants in the data.



Fig. 5. Mean correlation coefficients of predicting various rice phenotypes
shown as a function of top ranked SNPs. See Figure 2 caption for more details.

IV. DISCUSSION

In previous work we have studied SNP selection with
univariate and multivariate methods in large real and simulated
case control genome wide association studies with at least
30,000 SNPs [8]. There we found that applying a multivariate
classifier to all SNPs yielded a poor ranking compared to the
univariate chi-square test. We found it was better (for case
control prediction) to first rank SNPs with a univariate method
and then select the top few to re-rank with a multivariate
method like the support vector machine.

In this study we don’t necessarily make this observation.
For example in the mouse data we first started with this
method. We obtained the top 1000 and top 10,000 Pearson
ranked SNPs and re-ranked them with the support vector
regression and ridge regression methods. However, when we
ranked all SNPs with support vector regression and ridge
regression we obtained a high prediction correlation coefficient
than compared to re-ranking the top 1000 and top 10,000
Pearson ranked ones.

We conjecture this may be happening because in this study
we are dealing with regression data as opposed to classification
where we would have discrete labels. In fact while feature
selection for classification data is widely studied [17], [18],
[19], [20], [21], [15] there are hardly any studies that look
at this problem for regression data. Thus our study provides
some insight into feature selection in regression data.

The mouse dataset provides several other phenotypes that
we do not show in this study. In those phenotypes we make
similar observations as for the two shown in the paper: the
support vector regression ranking followed by ridge regression
gives the highest accuracy. We study CD8 and MCH since
these were chosen in the original study and we can compare
our accuracies to theirs [3].

One avenue of future work would be to study kernel and L1
norm regression methods [22]. The former would determine
non-linear regression solutions. The latter, however, is non-
convex and likely to have longer runtime solutions than the
methods we have used. Another avenue of future work is
the selection of the optimal penalty coefficient in the support
vector regression both for feature selection and phenotype
prediction.

V. CONCLUSION

Our results show that we can learn parsimonious SNP
models for predicting continuous phenotypes using the support
vector regression for ranking SNPs and ridge regression for
prediction. With this combination we reach comparable or
higher prediction values than previously reported and we do
so with fewer SNPs than previously used. Thus our method
may be useful for obtaining SNP models to perform accurate
phenotype prediction in genome wide studies.
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