
PRec-I-DCM3: A Parallel Framework for Fast and
Accurate Large Scale Phylogeny Reconstruction∗

Cristian Coarfa† Yuri Dotsenko† John Mellor-Crummey†

Luay Nakhleh† Usman Roshan‡

Abstract

Phylogenetic trees play a major role in representing the evolutionary relationships among
groups of organisms. Their accurate reconstruction very often involves solving hard optimiza-
tion problems, particularly the maximum parsimony (MP) and maximum likelihood (ML)
problems. Various heuristics have been devised for solving these two problems; yet, they
obtain good results within reasonable time limits only on small datasets. This has been a
major limitation for large scale phylogeny reconstruction, and particularly efforts for assem-
bling the Tree of Life—the evolutionary relationship of all organisms on earth. Roshan et al.
have recently introduced Rec-I-DCM3, an efficient and accurate meta-method for solving
the MP problem on large datasets of up to 14,000 taxa. Nonetheless, a drastic improvement in
Rec-I-DCM3’s performance is still needed in order to achieve similar (or better) accuracy on
datasets at the scale of the Tree of Life. In this paper we address this issue in two ways. We in-
vestigate, through experiments on biological datasets, the optimal choice of parameters whose
values affect the performance of Rec-I-DCM3. Further, we improve the performance of
Rec-I-DCM3 via parallelization. Experimental results demonstrate that our parallel method,
PRec-I-DCM3, achieves significant improvements, both in speed and accuracy, over its se-
quential counterpart.

1 Introduction

Phylogenies play a major role in representing the evolutionary relationships among groups of taxa.
Their pervasiveness has led biologists, mathematicians, and computer scientists to develop a wide
array of methods for their reconstruction. One of the outstanding problems facing biology today is

∗This work was supported in part by the Department of Energy under Grant DE-FC03-01ER25504/A000. The
computations were performed on an Itanium cluster purchased with support from the NSF under Grant EIA-0216467,
Intel, and Hewlett Packard.

†Department of Computer Science, Rice University, Houston, TX 77005, USA.
{ccristi,dotsenko,johnmc,nakhleh}@cs.rice.edu

‡Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
usman@cs.njit.edu

1

the reconstruction of the Tree of Life—the evolutionary history of all organisms on earth. Funda-
mental to this reconstruction is the ability to produce, within reasonable time constraints, accurate
phylogenies for large datasets (tens to hundreds of thousands of taxa), since the Tree of Life itself is
estimated to contain tens to hundreds of millions of taxa. The most commonly used approaches to
phylogeny reconstruction are heuristics for two hard optimization problems, maximum parsimony
(MP) and maximum likelihood (ML). However, despite decades of research and algorithm devel-
opment, acceptably accurate analyses that run within a few days of computation on one processor
are not currently possible much beyond a few thousand taxa for MP and a few hundred taxa for
ML—nor is it clear that increasing the computing power will enable the analysis of larger datasets,
as the accuracy of the heuristics steadily decreases with increasing size of datasets. Polynomial-
time algorithms do exist (Neighbor-Joining [18] and UPGMA [11] are the best known examples),
but many experimental studies have shown that such trees are not as accurate as those produced by
MP or ML analyses. As a result of the improved accuracy of MP approaches over polynomial-time
methods and of the significantly lower cost of MP analyses as compared to ML analyses, which are
sometimes more accurate, the majority of published phylogenies to date have been derived using
MP-based heuristics [19].

Whereas 90–95% accuracy is often considered excellent in heuristics for hard optimization
problems, heuristics used in phylogenetic reconstruction must be much more accurate: Williams
and Moret found that solutions to MP that had an error rate larger than 0.01% (i.e., whose length
exceeded the optimal length by more than 0.01%) produced topologically poor estimates of the true
tree [22]. Thus, heuristics for MP need at least 99.99% accuracy (and probably significantly more
on very large datasets) in order to produce topologically accurate trees. Obtaining this level of
accuracy while running within a reasonable time presents a stiff challenge to algorithm developers.

In [17], Roshan et al. presented a new technique that makes it possible to reach that level of
accuracy on datasets of large size—indeed, of sizes at least one order of magnitude larger than
could be analyzed before. Their technique, called Recursive-Iterative DCM3 (Rec-I-DCM3),
employs a divide-and-conquer strategy that combines recursion and iteration with a new variant of
the Disk-Covering Method (DCM) to find highly accurate trees quickly. Rec-I-DCM3 uses iter-
ation for escaping local optima, the divide-and-conquer approach of the DCMs to reduce problem
size, and recursion to enable further localization and reduction in problem size. A Rec-I-DCM3
search not only dramatically reduces the size of the explored tree space, but also finds a larger
fraction of MP trees with better scores than other methods. Roshan et al. demonstrated the
power of Rec-I-DCM3 on ten large biomolecular sequence datasets, each containing more than
1,000 sequences (half contain over 6,000 sequences and the largest contains almost 14,000 se-
quences). Their study showed that Rec-I-DCM3 convincingly outperformed TNT [6]—the best
implemented MP heuristic—often by orders of magnitude, on all datasets and at all times during
the time period (usually 24 hours) allotted for computation.

In order to be able to handle large datasets at the scale of the Tree of Life within reason-
able time limits and with high accuracy, the performance of Rec-I-DCM3 has to be improved
by orders of magnitude. In this paper, we address the problem of large scale phylogenetic tree
reconstruction by building on the success of Rec-I-DCM3. We have investigated, through exper-
iments on biological datasets, the best choice of parameters whose values affect the performance

2

of Rec-I-DCM3. Further, we have designed and implemented a parallel version of the method,
called PRec-I-DCM3. We have tested PRec-I-DCM3 on the biological datasets used in [17].
The results we obtained show a drastic improvement in the performance of the method. For ex-
ample, on the largest dataset used by Roshan et al., Rec-I-DCM3 took about 13 hours to find the
MP tree found by PRec-I-DCM3 within less than three hours. Further, the parsimony scores of
trees computed by PRec-I-DCM3 are consistently better than those computed by Rec-I-DCM3
within the same amount of time.

2 Maximum Parsimony

The parsimony criterion is but a reflection of Occam’s razor: the tree with the minimum number of
mutations along its branches best explains the data. In this section, we review the formal definition
of the maximum parsimony problem and the latest heuristics for solving it.

Let S be a set of sequences, each of length n, over a fixed alphabet Σ. Let T be a tree leaf-
labelled by the set S and with internal nodes labelled by sequences of length n over Σ. The length
(or parsimony score) of T with this labelling is the sum, over all the edges, of the Hamming
distances between the labels at the endpoints of the edge. (The Hamming distance between two
strings of equal length is the number of positions in which the two strings differ.) Thus the length
of a tree is also the total number of point mutations along the edges of the tree. The Maximum
Parsimony (MP) problem seeks the tree T leaf-labelled by S with the minimum length. While MP
is NP-hard [5], constructing the optimal labeling of the internal nodes of a fixed tree T can be done
in polynomial time [4].

2.1 Iterative Improvement Methods

Iterative improvement methods are some of the most popular heuristics in phylogeny reconstruc-
tion. A fast technique is used to find an initial tree, then a local search mechanism is applied
repeatedly in order to find trees with a better score. The most commonly used local move is called
Tree-Bisection and Reconnection (TBR) [9]. In TBR, an edge is removed from the given tree T

and each pair of edges touching each endpoint merged, thereby creating two subtrees, t and T − t;
the two subtrees are then reconnected by subdividing two edges (one in each subtree) and adding
an edge between the newly introduced nodes.

The Parsimony Ratchet [13] is an iterative technique that combines TBR with an interesting
approach to move out of local optima. When a local optimum has been reached, i.e., when no
further improvement can be made through a TBR move, the input data are modified by randomly
doubling p% of the sites to produce new sequences that are 1.p times longer than the original input
sequences. (Typically, p is 0.25.) Iterative improvement with TBR is then attempted on the new
data. When this new search reaches a local optimum, the additional sites are removed (reverting to
the original sequence length) and iterative improvement is resumed from this new configuration.
The parsimony ratchet is implemented in two software packages, TNT [6] and PAUP* [20]. TNT
provides a faster implementation, but unlike PAUP*, it is not publicly available; neither package
is open-source.

3

2.2 Disk-Covering Methods

Disk-Covering Methods (DCMs) [7, 8, 12, 16, 21] are a family of divide-and-conquer methods
designed to “boost” the performance of existing phylogenetic reconstruction methods. All DCMs
proceed in four major phases: (i) decomposing the dataset, (ii) solving the subproblems, (iii) merg-
ing the subproblems, and (iv) refining the resulting tree. Variants of DCMs come from different
decomposition methods—the last three phases are unaffected. The first DCM [7], also called
DCM1, was designed for use with distance-based methods and has provable theoretical guarantees
about the sequence length required to reconstruct the true tree with high probability under Markov
models of evolution [21]. The second DCM [8], also called DCM2, was designed to speed up
heuristic searches for MP trees.

3 Rec-I-DCM3

DCM1 can be viewed, in rough terms, as attempting to produce overlapping clusters of taxa to
minimize the intracluster diameter; it produces good subproblems (small enough in size), but the
structure induced by the decomposition is often poor. DCM2 computes a fixed structure (a graph
separator) to overcome that drawback, but the resulting subproblems tend to be too large. More-
over, both DCM1 and DCM2 operate solely from the the matrix of estimated pairwise distances,
so that they can produce only one (up to tiebreaking) decomposition. In contrast, DCM3 uses a
dynamically updated guide tree (in practice, the current estimate of the phylogeny) to direct the
decomposition—so that DCM3 will produce different decompositions for different guide trees.
This feature allows to focus the search on the best parts of the search space and is at the heart of
the iterative use of the decomposition: roughly speaking, the iteration in Rec-I-DCM3 consists
of successive refinements of the guide tree. Thanks to the guide tree, DCM3 also produces smaller
subproblems than DCM2: the guide tree provides the decomposition structure, but does so in a
manner responsive to the phylogenetic estimation process. Finally, DCM3 was designed to be
much faster than either DCM1 or DCM2 in producing the decompositions (mostly by not insisting
on their optimality), since previous experiments had shown that dataset decomposition used most
of the running time with DCM2.

Roshan et al. designed DCM3 in part to avoid producing large subsets, as DCM2 is prone to
do [17]. Yet, of course, the subproblems produced from a very large dataset remain too large for
immediate solution by a base method (a phylogenetic tree reconstruction method of choice). Hence
they used DCM3 recursively, producing smaller and smaller subproblems until every subproblem
was small enough to be solved directly. In [17], Roshan et al. showed that DCM3 produced
subproblems of sizes bounded by about half the initial subproblem size and much smaller than
those produced by DCM2. (Rec-I-DCM3 in that series of tests was set up to recurse until each
subproblem was of size at most one quarter of the original size.)

Once the dataset is decomposed into overlapping subsets A1, A2, . . . , Am (m ≤ 4 is typical),
subtrees are constructed for each subset, Ai, using the chosen base method, and then combined
using the Strict Consensus Merger [7, 8] to produce a tree on the combined dataset.

The Rec-I-DCM3 method [17] takes as input the set S = {s1, . . . , sn} of n aligned biomolec-

4

ular sequences, the chosen base method, and a starting tree T . In [17], the authors used TNT (with
default settings) as the base method, since it is the hardest to improve (in comparison, the PAUP*
implementation of the parsimony ratchet [2] is easier to improve). The Rec-I-DCM3 method
produces smaller subproblems by recursively applying the centroid-edge decomposition until each
subproblem is of size at most k. The subtrees are then computed, merged, and resolved (from the
bottom-up, using random resolution) to obtain a binary tree on the full dataset. These steps are
repeated for a specified number of iterations. Figure 1 demonstrates the significant improvement
over TNT gained by employing the Rec-I-DCM3 booster to the method.

0 4 8 12 16 20 24
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time (hours)

A
ve

ra
ge

 %
 a

bo
ve

 th
e

be
st

 s
co

re

TNT−default
Rec−I−DCM3(TNT)

0 4 8 12 16 20 24
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (hours)

A
ve

ra
ge

 %
 a

bo
ve

 th
e

be
st

 s
co

re

TNT−default
Rec−I−DCM3(TNT)

(a) The European RNA dataset (b) The RDPII dataset

Figure 1: (a)Average MP scores of TNT and Rec-I-DCM3(TNT) on the European RNA dataset,
given as the percentage above the best score. Shown are the datapoints of all five runs of both
methods indicated by small symbols. After the fourth hour there is no overlap of points and the
variances of both the methods are low. Note: the vertical range varies across the datasets. (b)
Average MP scores of TNT and Rec-I-DCM3(TNT) on the RDPII dataset, given as the percentage
above the best score. Also shown are the datapoints of all five runs of both methods indicated by
small symbols. Note that the variances are very low and after the third hour there is no overlap of
points.

4 Parallel Rec-I-DCM3

As described in section 3, Rec-I-DCM3 is a divide-and-conquer algorithm, which makes it a
natural candidate for parallelization. For the datasets we experimented with (up to 14000 taxa), the
problem fits into memory, which simplifies the implementation. In Figure 2 we present a typical
problem decomposition induced by Rec-I-DCM3; the decomposition contains the main problem,
composite subproblems (C1, C2) and leaf subproblems (L1-L5).

5

L1 L2

L3

L4 L5

Main

C1

C2

Figure 2: The Rec-I-DCM3 decomposition.

Allen and Kennedy [1] discuss key requirements for high performance of parallel programs,
such as load balancing and efficient communication. The natural implementation for PRec-I-DCM3
is to use task-parallelism with a master-slave model. The master node maintains a database of sub-
problems: subproblems available for solving (“available”), already solved subproblems (“solved”),
and subproblems currently being solved by a worker (“active”). During its lifetime, a subproblem
changes states from “available” to “active” to “solved”. The master coordinates the distributed
computation and ensures that the system is in a consistent state throughout the computation.

At the beginning of a PRec-I-DCM3 iteration, the master performs a one-level decomposition
of the main problem, using the current guide tree (see Section 3 for details regarding the use of
a guide tree). Among the resultant subproblems, there are usually both leaf subproblems and
composite ones. Next, it dispatches available subproblems, in decreasing order of their sizes, to
the idle workers; the rationale is that the largest subproblems would take longer time to solve.
Once a problem is dispatched, its state is changed from “available” to “active”.

The worker processes wait for subproblems from the master. If the problem received is a
leaf subproblem, then the worker invokes a standalone solver, such as TNT or PAUP*, and then
returns the resulting subtree to the master. The solver runs without a time limit, because the leaf
subproblems are small (usually not exceeding 2000 taxa). If the problem received is a composite
subproblem, the worker decomposes it further into subproblems. It selects the largest subproblem
among these, performs additional work on it, and then returns the remaining subproblems to the
master.

When the master receives the solution for a leaf subproblem, it changes its state from “active” to
“solved”. It checks if all the children subproblems with the same parent as the current subproblem
are solved; if this is the case, then it sends all the children subproblems to a worker for merging.

When the master receives the decomposition of a composite subproblem, it adds all the children
subproblems to the problem database, with the state “available”, and marks the subproblem kept
by the worker as “active”.

When a worker receives a command to merge a composite subproblem, it receives the solutions

6

for the children subproblems from the master and applies the strict consensus merging [7, 8],
followed by a random refinement of the resulting tree. Finally, the solution is sent to the master.

When all subproblems of the main problem are solved, the master merges the their solution
trees, then signals the workers to perform the random refining followed by the global search phase.
These random refinements are done independently and usually result in different trees since each
worker process has an independent random number generator. After the refinement phase, workers
invoke the standalone solver to compute the parsimony score of the entire tree. The time of the
search is limited to a fixed value (referred to as the Global Search Time Limit, or GSTL), which is
provided at the program launch. The limit is necessary because the full-size problem is large (up
to 14000 taxa). After finishing the global search phase, each worker sends the resultant parsimony
scores to the master, which, in turn, selects the minimum score and retrieves the corresponding tree
from the worker. This tree is used as the guide tree for the following iteration.

A significant advantage of PRec-I-DCM3 over Rec-I-DCM3 is that the former is able to run
several instances of the global search phase in parallel. These instances start from different points
in the tree space, potentially leading to a wider coverage of the tree search space and an alternate
option for escaping local optima.

The current master-slave scheme implementation is a prototype. For very large datasets (20000+
taxa), the master can become a bottleneck flooded with incoming and outgoing communication
traffic. A distributed master scheme will solve this problem. An emerging family of global address
languages, such as Co-Array Fortran [14] or Unified Parallel C [3], might prove efficient for such
an implementation because they provide one-sided communication on the language level perfectly
suited for the distributed master scheme.

5 Experimental Settings and Results

The platform we used for experiments was a cluster of 92 HP zx6000 workstations interconnected
with Myrinet 2000. Each workstation node contains two 900MHz Intel Itanium 2 processors with
32KB/256KB/1.5MB of L1/L2/L3 cache, 4GB of RAM, and the HP zx1 chipset. Each node is
running the Linux operating system (kernel version 2.4.18-e plus patches). We used the Intel
C/C++ compiler version 8.1 for Itanium.

We ran both Rec-I-DCM3 and PRec-I-DCM3 on the two largest datasets used in [17]:

• European RNA: a dataset of 11,361 aligned small subunit ribosomal Bacteria RNA se-
quences (1,360 sites) [23].

• RDPII: a dataset of 13,921 aligned 16s ribosomal Proteobacteria RNA sequences (1,359
sites) [10].

We report the average results of the methods over five runs on the two datasets.
Since Rec-I-DCM3 uses strict consensus merging with random refinement, a good random

number generator is essential to obtain credible results. Each node used the UNIX random ran-
dom number generator initialized with a seed read from /dev/random at the beginning of a
run.

We investigated two main questions:

7

1. What is the optimal choice of GSTL and subproblem size that yields the best results of
Rec-I-DCM3?

2. Using the optimal choice of parameters, how does PRec-I-DCM3 perform compared to
Rec-I-DCM3?

To answer the first question, we ran Rec-I-DCM3 on the European RNA and RDPII datasets
for 13 hours, and recorded the average best scores obtained by the method for various subproblem
sizes and GSTL values. Tables 1 and 2 show the average best scores obtained by Rec-I-DCM3 on

Table 1: Average best scores obtained by Rec-I-DCM3 on the European RNA dataset, with
different GSTL values and subproblem sizes.

Max. Subproblem Size \ GSTL 4 min 8 min 16 min 32 min 60 min

500 273688 272326 272209 272160 272163
1000 272865 272194 272158 272163 272145
2000 272133 272127 272155 272133 272138
4000 272151 272146 272209 272154 272155

Table 2: Average best scores obtained by Rec-I-DCM3 on the RDPII dataset, with different
GSTL values and subproblem sizes.

Max. Subproblem Size \ GSTL 4 min 8 min 16 min 32 min 60 min

500 243545 242005 241131 241093 241088
1000 242529 241275 241140 241069 241042
2000 241054 241044 241062 241017 241068
4000 241135 241154 241118 241131 241097

the European RNA and RDPII datasets, respectively. The tables show that maximum subproblem
size of 2000 taxa yields the best results on both datasets, under the conditions of our experiments.
However, a GSTL of 8 minutes gave the best results on the European RNA dataset, while a GSTL
of 32 minutes gave the best results on the RDPII dataset.

Further, we focused on maximum subproblem size of 2000 taxa, and investigated the perfor-
mance of Rec-I-DCM3 for different values of GSTL for the duration of 13-hour runs. Figures
3 and 4 show the results. These figures show that a GSTL of 8 minutes becomes consistently the
optimal choice on the European RNA dataset after about 8 hours and 40 minutes, whereas a GSTL
of 32 minutes becomes consistently the optimal choice on the RDPII dataset after about 6 hours
and 30 minutes.

These results demonstrate that different datasets may require different parameter settings of
Rec-I-DCM3 in order to achieve the best performance. We expect that the choice of these pa-
rameters depends on the quality (in terms of parsimony score and topology) of the tree used as the

8

0 1 2 3 4 5 6 7 8 9 10 11 12 13

2.721

2.7215

2.722

2.7225

2.723

2.7235

x 10
5

Time (hours)

P
ar

si
m

o
n

y
S

co
re

60 min GSTL
32 min GSTL
16 min GSTL
8 min GSTL
4 min GSTL

Figure 3: Results obtained by Rec-I-DCM3 on the European RNA dataset, with maximum sub-
problem size of 2000 taxa and different GSTL values for global search.

start point in each iteration, as well as the evolutionary diameter1 of the dataset. We will investigate
this in our future work.

After determining the optimal choice of maximal subproblem size and GSTL values, we used
these values for PRec-I-DCM3 and compared its performance to that of Rec-I-DCM3 under
the same settings. The results are shown in Figures 5—8.

To compare the performance of PRec-I-DCM3 and Rec-I-DCM3, we ran both methods on
the two datasets for 13 hours, using a maximal subproblem size of 2000 taxa, and GSTL values of
8 and 32 minutes for the European RNA and RDPII datasets, respectively. We plotted the average
parsimony score obtained by the two method as a function of time, and the topological difference
between the best trees computed by the two methods as computed by the Robinson-Foulds (RF)
metric [15] of topological tree difference. We now briefly review the RF metric.

Let T be an unrooted tree leaf-labeled by a set S of taxa. An edge e = (u, v) in T defines a
bipartition of S (the set of all leaves on one side of the edge, and the set of all other leaves). Let
C(T) be the set of bipartitions defined by all edges in tree T . The RF measure between two trees
T and T ′ is defined as

RF (T, T ′) =
|C(T)−C(T ′)|

|C(T)|
+

|C(T ′)−C(T)|

|C(T ′)|

2
.

Figure 5 shows that, on the European RNA dataset, PRec-I-DCM3 consistently outperforms

1The evolutionary diameter of a dataset is defined as the maximum number of changes between any two taxa in the
dataset.

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13
2.4095

2.41

2.4105

2.411

2.4115

2.412

2.4125

2.413

2.4135

2.414
x 10

5

Time (hours)

P
ar

si
m

o
n

y
S

co
re

60 min GSTL
32 min GSTL
16 min GSTL
8 min GSTL
4 min GSTL

Figure 4: Results obtained by Rec-I-DCM3 on the RDPII dataset, with maximum subproblem
size of 2000 taxa and different GSTL values for global search.

Rec-I-DCM3, with the exception of the 2-CPU case. The figure shows that the best parsimony
score computed by Rec-I-DCM3 after 6 and a half hours is computed by PRec-I-DCM3 after
two and a half hours only using 8 or 16 workers. Further, the best parsimony score computed
by Rec-I-DCM3 after a complete run of 13 hours is computed by PRec-I-DCM3 (using 8 and
16 workers) after only 7 and a half hours. Finally, despite a seemingly small difference in the
parsimony scores computed by the two methods after 13 hours, Figure 6 shows that the actual
trees computed by the methods differ in about 25% of their internal edges, according to the RF
metric. This results shows a significant difference between the trees computed by the two methods
on the European RNA dataset.

More dramatic improvements were observed on the RDPII dataset, as Figure 7 demonstrates.
On this dataset, the performance of PRec-I-DCM3 is consistently better than that of Rec-I-DCM3,
regardless of the number of workers used in the PRec-I-DCM3 implementation. The best perfor-
mance of PRec-I-DCM3 on this dataset is achieved using 8 and 16 worker CPUs, with a slight
edge for the 8-CPU implementation after 11 hours. Notice that the best parsimony score com-
puted by Rec-I-DCM3 after the complete run of 13 hours is obtained by PRec-I-DCM3 using 8
CPUs after only 4 hours. Figure 8 demonstrates that the difference between the parsimony scores
obtained by the two methods after 13 hours translates into a 40% difference in the topologies
(specifically, numbers of internal edges) of the trees computed by the two methods, according to
the RF measure.

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13

2.721

2.7215

2.722

2.7225

2.723

2.7235

x 10
5

Time (hours)

P
ar

si
m

o
n

y
S

co
re

1 CPU
2 CPUs
4 CPUs
8 CPUs
16 CPUs

Figure 5: Results obtained by Rec-I-DCM3 and PRec-I-DCM3 on the European RNA dataset,
with maximum subproblem size of 2000 taxa and GSTL of 8 minutes for global search. The 1-CPU
curve corresponds to the Rec-I-DCM3, whereas the other curves correspond to PRec-I-DCM3
using different numbers of CPUs.

6 Conclusions and Future Work

The Rec-I-DCM3 method of Roshan et al. was the first technique that allowed a successful
application of parsimony heuristics with high accuracy within reasonable time limits. Nonetheless,
in order to reconstruct, with high accuracy, phylogenetic trees at a much larger scale, further speed-
up and improvements are imperative. In this paper we introduced the first such improvement
through PRec-I-DCM3, a parallel version of the Rec-I-DCM3 method. We implemented and
ran PRec-I-DCM3 on two large datasets. The results demonstrated a significant improvement
over Rec-I-DCM3.

Directions for future work include:

• Exploring a distributed master scheme.

• Investigating the difference in optimal parameter choice across different datasets.

• Experimental testing of PRec-I-DCM3 on simulated datasets. Using simulations allows for
investigating the performance of the method with respect to the “true” tree, which is known
in such studies (as opposed to real datasets, in which the true tree is not known).

• Existing implementations of TNT and PAUP* are limited to handle up to 16,000-taxon trees.

11

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (hours)

R
F

Figure 6: RF values between the best trees obtained by Rec-I-DCM3 and PRec-I-DCM3 (on 8
CPUs) on the European RNA dataset.

We intend to study the performance of PRec-I-DCM3 on datasets larger than the ones we
used, once tools that handle more than 16,000 taxa are available.

• Application of Rec-I-DCM3 and PRec-I-DCM3 to likelihood heuristics.

7 Acknowledgments

The authors would like to thank Erion Plaku for helpful discussions, and Derek Ruths for providing
us with the code for computing the Robinson-Foulds distance between trees.

References

[1] Randy Allen and Ken Kennedy. Optimizing Compilers for Modern Architectures: A
Dependence-Based Approach. Morgan Kaufmann Publishers, San Francisco, CA, 2001.

[2] O.R.P. Bininda-Emonds. Ratchet implementation in PAUP*4.0b10, 2003. Available from
www.tierzucht.tum.de:8080/WWW/Homepages/Bininda-Emonds.

[3] W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick, and K. Warren E. Brooks. Introduc-
tion to UPC and language specification. Technical Report CCS-TR-99-157, IDA Center for
Computing Sciences, May 1999.

12

0 1 2 3 4 5 6 7 8 9 10 11 12 13
2.4095

2.41

2.4105

2.411

2.4115

2.412

2.4125

2.413

2.4135

2.414
x 10

5

Time (hours)

P
ar

si
m

o
n

y
S

co
re

1 CPU
2 CPUs
4 CPUs
8 CPUs
16 CPUs

Figure 7: Results obtained by Rec-I-DCM3 and PRec-I-DCM3 on the RDPII dataset, with
maximum subproblem size of 2000 taxa and GSTL of 32 minutes for global search. The 1-CPU
curve corresponds to the Rec-I-DCM3, whereas the other curves correspond to PRec-I-DCM3
using different numbers of CPUs.

[4] W.M. Fitch. Toward defining the course of evolution: minimum change for a specified tree
topology. Syst. Zool., 20:406–416, 1971.

[5] L.R. Foulds and R.L. Graham. The Steiner problem in phylogeny is NP-complete. Advances
in Applied Mathematics, 3:43–49, 1982.

[6] P.A. Goloboff. Analyzing large data sets in reasonable times: solution for composite optima.
Cladistics, 15:415–428, 1999.

[7] D. Huson, S. Nettles, and T. Warnow. Disk-covering, a fast-converging method for phyloge-
netic tree reconstruction. Journal of Computational Biology, 6:369–386, 1999.

[8] D. Huson, L. Vawter, and T. Warnow. Solving large scale phylogenetic problems using
DCM2. In Proc. 7th Int’l Conf. on Intelligent Systems for Molecular Biology (ISMB’99),
pages 118–129. AAAI Press, 1999.

[9] D.R. Maddison. The discovery and importance of multiple islands of most parsimonious
trees. Systematic Biology, 42(2):200–210, 1991.

13

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (hours)

R
F

Figure 8: RF values between the best trees obtained by Rec-I-DCM3 and PRec-I-DCM3 (on 8
CPUs) on the RDPII dataset.

[10] B.L. Maidak, J.R. Cole, T.G. Lilburn, C.T. Parker Jr, P.R. Saxman, J.M. Stredwick, G.M.
Garrity, B. Li, G.J. Olsen, S. Pramanik, T.M. Schmidt, and J.M. Tiedje. The RDP (ribosomal
database project) continues. Nucleic Acids Research, 28:173–174, 2000.

[11] C.D. Michener and R.R. Sokal. A quantitative approach to a problem in classification. Evo-
lution, 11:130–162, 1957.

[12] L. Nakhleh, U. Roshan, K. St. John, J. Sun, and T. Warnow. Designing fast converging
phylogenetic methods. In Proc. 9th Int’l Conf. on Intelligent Systems for Molecular Biology
(ISMB’01), volume 17 of Bioinformatics, pages S190–S198. Oxford U. Press, 2001.

[13] K.C. Nixon. The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics,
15:407–414, 1999.

[14] R. W. Numrich and J. K. Reid. Co-Array Fortran for parallel programming. Technical Report
RAL-TR-1998-060, Rutheford Appleton Laboratory, August 1998.

[15] D.F. Robinson and L.R. Foulds. Comparison of phylogenetic trees. Mathematical Bio-
sciences, 53:131–147, 1981.

[16] U. Roshan, B.M.E. Moret, T.L. Williams, and T. Warnow. Performance of supertree meth-
ods on various dataset decompositions. In O.R.P. Bininda-Emonds, editor, Phylogenetic Su-

14

pertrees: Combining Information to Reveal the Tree of Life, volume 3 of Computational
Biology, pages 301–328. Kluwer Academic Publishers, 2004.

[17] U. Roshan, M. E. Moret, T. L. Williams, and T. Warnow. Rec-I-DCM3: A fast algorithmic
technique for reconstructing large phylogenetic trees. In Proceedings of the IEEE Computa-
tional Systems Bioinformatics conference (CSB) 2004, 2004.

[18] N. Saitou and M. Nei. The neighbor-joining method: A new method for reconstructing
phylogenetic trees. Molecular Biology and Evolution, 4:406–425, 1987.

[19] M.J. Sanderson, B.G. Baldwin, G. Bharathan, C.S. Campbell, D. Ferguson, J.M. Porter,
C. Von Dohlen, M.F. Wojciechowski, and M.J. Donoghue. The growth of phylogenetic infor-
mation and the need for a phylogenetic database. Systematic Biology, 42:562–568, 1993.

[20] D.L. Swofford. PAUP*: Phylogenetic analysis using parsimony (and other methods), 2002.
Sinauer Associates, Sunderland, Mass., Version 4.0.

[21] T. Warnow, B.M.E. Moret, and K. St. John. Absolute convergence: True trees from short
sequences. In Proc. 12th Ann. ACM-SIAM Symp. Discrete Algorithms (SODA’01), pages
186–195. SIAM Press, 2001.

[22] T.L. Williams, B.M.E. Moret T. Berger-Wolf, U. Roshan, and T. Warnow. The relationship
between maximum parsimony scores and phylogenetic tree topologies. Technical Report
TR-CS-2004-04, Department of Computer Science, The University of New Mexico, 2004.

[23] J. Wuyts, Y. Van de Peer, T. Winkelmans, and R. De Wachter. The European database on
small subunit ribosomal RNA. Nucleic Acids Research, 30:183–185, 2002.

15

