

 Int. J. Bioinformatics Research and Applications, Vol. 2, No. 4, 2006 407

 Copyright © 2006 Inderscience Enterprises Ltd.

PRec-I-DCM3: a parallel framework for fast
and accurate large-scale phylogeny reconstruction

Yuri Dotsenko*, Cristian Coarfa, Luay Nakhleh
and John Mellor-Crummey
Department of Computer Science,
Rice University, 6100 Main Street,
Houston TX 77005, USA
E-mail: dotsenko@cs.rice.edu E-mail: ccristi@cs.rice.edu
E-mail: nakhleh@cs.rice.edu E-mail: johnmc@cs.rice.edu
*Corresponding author

Usman Roshan
Department of Computer Science,
New Jersey Institute of Technology,
GITC 4400, University Heights,
Newark NJ 07102, USA
E-mail: usman@cs.njit.edu

Abstract: Accurate reconstruction of phylogenetic trees often involves solving
hard optimisation problems, particularly the Maximum Parsimony (MP) and
Maximum Likelihood (ML) problems. Various heuristics yield good results for
these problems within reasonable time only on small datasets. This is a major
impediment for large-scale phylogeny reconstruction. Roshan et al. introduced
Rec-I-DCM3, an efficient and accurate meta-method for solving the MP
problem on large datasets of up to 14,000 taxa. We improve the performance of
Rec-I-DCM3 via parallelisation. The experiments demonstrate that our parallel
method, PRec-I-DCM3, achieves significant improvements, both in speed and
accuracy, over its sequential counterpart.

Keywords: phylogeny; Maximum Parsimony (MP); Disk-Covering Method
(DCM); DCM3; Rec-I-DCM3; PRec-I-DCM3; parallel computing; scalability;
bioinformatics research and applications.

Reference to this paper should be made as follows: Dotsenko, Y., Coarfa, C.,
Nakhleh, L., Mellor-Crummey, J. and Roshan, U. (2006) ‘PRec-I-DCM3: a
parallel framework for fast and accurate large-scale phylogeny reconstruction’,
Int. J. Bioinformatics Research and Applications, Vol. 2, No. 4, pp.407–419.

Biographical notes: Yuri Dotsenko is a PhD student in the Department of
Computer Science at Rice University, Houston, TX, where he also received his
MS Degree. His research interests include compiler technology for parallel
computing, distributed computing and bioinformatics.

Cristian Coarfa is a PhD student in the Department of Computer Science at
Rice University, Houston, TX, where he also received his MS Degree. His
research interests include parallel and distributed computing, bioinformatics
and advanced compiler technology.

 408 Y. Dotsenko et al.

Luay Nakhleh received his PhD Degree in Computer Science in 2004 from the
University of Texas, Austin, TX. His Doctoral Dissertation was about
Phylogenetic Networks in Biology and Historical Linguistics. He joined the
Department of Computer Science at Rice University as an Assistant Professor
in July 2004. His research interests include phylogenetics, bacterial genomics
and computational gene finding.

John Mellor-Crummey received his PhD in Computer Science from the
University of Rochester in 1989. He joined Rice University in 1989, where he
is now an Associate Professor in the Department of Computer Science. Since
2002, he has been Deputy Director of Rice’s Center for High Performance
Software Research. His research focuses on compiler, tool and run-time library
support for high performance computing.

Usman Roshan received his PhD Degree in Computer Science in 2004 from the
University of Texas at Austin. His Dissertation topic was Algorithms for
Constructing Phylogenies on Large Datasets. He joined the Computer Science
Department at the New Jersey Institute of Technology in August 2004 as an
Assistant Professor. His research interests are phylogenetics, alignment,
comparative approaches in bioinformatics and high performance computing.

1 Introduction

Phylogenies play a major role in representing the evolutionary relationships among
groups of taxa. Their importance has led biologists, mathematicians and computer
scientists to develop a wide array of methods for their reconstruction. One of the open
problems facing biology today is reconstruction of the Tree of Life – the evolutionary
history of all organisms on earth. Fundamental to this reconstruction is the ability to
produce, within reasonable time constraints, accurate phylogenies for large datasets (tens
to hundreds of thousands of taxa), since the Tree of Life itself is estimated to contain tens
to hundreds of millions of taxa. The most commonly used approaches to phylogeny
reconstruction are heuristics for two hard optimisation problems, MP and ML. However,
despite decades of research and algorithm development, acceptably accurate analyses that
run within a few days of computation on one processor are not currently possible for
much beyond a few thousand taxa for MP and a few hundred taxa for ML – nor is it clear
that increases in the computing power will enable adequate analysis of larger datasets, as
the accuracy of the heuristics steadily decreases with increasing size of datasets.
Polynomial-time algorithms do exist (Neighbour-Joining (Saitou and Nei, 1987) and
UPGMA (Michener and Sokal, 1957) are the best known examples), but many
experimental studies have shown that such trees are not as accurate as those produced by
MP or ML analyses. Because MP approaches are more accurate than polynomial-time
methods and are significantly faster than ML analyses, which are sometimes more
accurate, the majority of published phylogenies to date have been derived using
MP-based heuristics (Sanderson et al., 1993).

Whereas 90–95% accuracy is often considered excellent in heuristics for hard
optimisation problems, heuristics used in phylogenetic reconstruction must be much more
accurate: Williams and Moret found that solutions to MP that had an error rate larger than
0.01% (i.e., whose length exceeded the optimal length by more than 0.01%) produced

 PRec-I-DCM3: a parallel framework for fast 409

topologically poor estimates of the true tree (Williams et al., 2004). Thus, heuristics for
MP need at least 99.99% accuracy (and probably significantly more on very large
datasets) in order to produce topologically accurate trees. Obtaining this level of accuracy
while running within a reasonable time presents a stiff challenge to algorithm developers.

In Roshan et al. (2004b) presented a new technique that makes it possible to reach an
acceptable level of accuracy on datasets of large size – indeed, of sizes at least one order
of magnitude larger than could be analysed before. Their technique, called
Recursive-Iterative DCM3 (Rec-I-DCM3), employs a divide-and-conquer strategy that
combines recursion and iteration with a new variant of the DCM to compute highly
accurate trees quickly. Rec-I-DCM3 uses iteration for escaping local optima, the
divide-and-conquer approach of the DCMs to reduce problem size, and recursion to
enable further localisation and reduction in problem size. A Rec-I-DCM3 search not only
dramatically reduces the size of the explored tree space, but also finds a larger fraction of
MP trees with better scores than other methods. Roshan et al. demonstrated the power of
Rec-I-DCM3 on ten large bio-molecular sequence datasets, each containing more than
1,000 sequences (half contain over 6,000 sequences and the largest contains almost
14,000 sequences). Their study showed that Rec-I-DCM3 convincingly outperformed
TNT (Goloboff, 1999) – the best implemented MP heuristic – often by orders of
magnitude, on all datasets and at all times during the time period (usually 24 hours)
allotted for computation.

If it is to be useful for analysing large datasets at the scale of the Tree of Life within
reasonable time limits and with high accuracy, the performance of Rec-I-DCM3 must be
improved by orders of magnitude. In this paper, we address the problem of large-scale
phylogenetic tree reconstruction by building on the success of Rec-I-DCM3. We have
investigated, through experiments on biological datasets, the best choice of parameters
whose values affect the performance of Rec-I-DCM3. Further, we have designed and
implemented a parallel version of the method, called PRec-I-DCM3. We have compared
PRec-I-DCM3 and Rec-I-DCM3 on the two largest biological datasets used in Roshan
et al. (2004b). Our results show a drastic improvement in the performance of the method.
For example, on the largest dataset used by Roshan et al. Rec-I-DCM3 took about
13 hours to find the MP tree found by PRec-I-DCM3 within less than three hours.
Further, the parsimony scores of trees computed by PRec-I-DCM3 are consistently better
than those computed by Rec-I-DCM3 within the same amount of time.

2 Maximum Parsimony (MP)

The parsimony criterion is but a reflection of Occam’s razor: the tree with the minimum
number of mutations along its branches best explains the data. In this section, we review
the formal definition of the MP problem and the latest heuristics for solving it.

Let S be a set of sequences, each of length n, over a fixed alphabet Σ. Let T be a tree
leaf-labelled by the set S and with internal nodes labelled by sequences of length n over
Σ. The length (or parsimony score) of T with this labelling is the sum, over all the edges,
of the Hamming distances between the labels at the endpoints of the edge.
(The Hamming distance between two strings of equal length is the number of positions in
which the two strings differ.) Thus the length of a tree is also the total number of point
mutations along the edges of the tree. The MP problem seeks the tree T leaf-labelled by S
with the minimum length. While MP is NP-hard (Foulds and Graham, 1982),

 410 Y. Dotsenko et al.

constructing the optimal labelling of the internal nodes of a fixed tree T can be done in
polynomial time (Fitch, 1971).

2.1 Iterative improvement methods

Iterative improvement methods are some of the most popular heuristics in phylogeny
reconstruction. A fast technique is used to find an initial tree, then a local search
mechanism is applied repeatedly in order to find trees with a better score. The most
commonly used local move is called Tree-Bisection and Reconnection (TBR) (Maddison,
1991). In TBR, an edge is removed from the given tree T and each pair of edges touching
each endpoint merged, thereby creating two subtrees, t and T – t; the two subtrees are
then reconnected by subdividing two edges (one in each subtree) and adding an edge
between the newly introduced nodes.

The Parsimony Ratchet (Nixon, 1999) is an iterative technique that combines TBR
with an interesting approach to move out of local optima. When a local optimum has
been reached, i.e., when no further improvement can be made through a TBR move, the
input data are modified by randomly doubling p% of the sites to produce new sequences
that are 1 + p times longer than the original input sequences. (Typically, p is 0.25.)
Iterative improvement with TBR is then attempted on the new data. When this new
search reaches a local optimum, the additional sites are removed (reverting to the original
sequence length) and iterative improvement is resumed from this new configuration. The
parsimony ratchet is implemented in two software packages, TNT (Goloboff, 1999) and
PAUP* (Swofford, 2002). TNT provides a faster implementation; neither package is
publicly available.

2.2 Disk-Covering Methods (DCMs)

DCMs (Huson et al., 1999a, 1999b; Nakhleh et al., 2001; Roshan et al., 2004a; Warnow
et al., 2001) are a family of divide-and-conquer methods designed to ‘boost’ the
performance of existing phylogenetic reconstruction methods. All DCMs proceed in four
major phases:

• decomposing the dataset

• solving the subproblems

• merging the subproblems

• refining the resulting tree.

Variants of DCMs come from different decomposition methods – the last three phases are
unaffected. The first DCM (Huson et al., 1999a), also called DCM1, was designed for use
with distance-based methods and has provable theoretical guarantees about the sequence
length required to reconstruct the true tree with high probability under Markov models of
evolution (Warnow et al., 2001). The second DCM (Huson et al., 1999b), also called
DCM2, was designed to speed up heuristic searches for MP trees.

 PRec-I-DCM3: a parallel framework for fast 411

3 Rec-I-DCM3

DCM1 can be viewed, in rough terms, as attempting to produce overlapping clusters of
taxa to minimise the intra-cluster diameter; it produces good subproblems (small enough
in size), but the structure induced by the decomposition is often poor. DCM2 computes a
fixed structure (a graph separator) to overcome that drawback, but the resulting
subproblems tend to be too large. Moreover, both DCM1 and DCM2 operate solely from
the the matrix of estimated pairwise distances, so that they can produce only one (up to
tiebreaking) decomposition. In contrast, DCM3 uses a dynamically updated guide tree
(in practice, the current estimate of the phylogeny) to direct the decomposition – so that
DCM3 will produce different decompositions for different guide trees. This feature
allows to focus the search on the best parts of the search space and is at the heart of the
iterative use of the decomposition: roughly speaking, the iteration in Rec-I-DCM3
consists of successive refinements of the guide tree. Thanks to the guide tree, DCM3 also
produces smaller subproblems than DCM2: the guide tree provides the decomposition
structure, but does so in a manner responsive to the phylogenetic estimation process.
Finally, DCM3 was designed to be much faster than either DCM1 or DCM2 in producing
the decompositions (mostly by not insisting on their optimality), since previous
experiments had shown that dataset decomposition contributed the most to the running
time of DCM2.

Roshan et al. designed DCM3 in part to avoid producing large subsets, as DCM2 is
prone to do (Roshan et al., 2004b). Yet, of course, the subproblems produced from a very
large dataset remain too large for immediate solution by a base method – a phylogenetic
tree reconstruction method of choice. Hence they used DCM3 recursively, producing
smaller and smaller subproblems until every subproblem was small enough to be solved
directly. In Roshan et al. (2004b) showed that DCM3 produced subproblems of sizes
bounded by about half the initial subproblem size and much smaller than those produced
by DCM2. (Rec-I-DCM3 in that series of tests was set up to recurse until the size of each
subproblem was at most one quarter of the original problem size.)

Once the dataset is decomposed into overlapping subsets A1, A2, …, Am (m ≤ 4 is
typical), subtrees are constructed for each subset, Ai, using the chosen base method and
then combined using the Strict Consensus Merger (Huson et al., 1999a, 1999b) to
produce a tree on the combined dataset.

The Rec-I-DCM3 method (Roshan et al., 2004b) takes as input the set S = {s1, …, sn}
of n aligned bio-molecular sequences, the chosen base method, and a starting tree T.
In Roshan et al. (2004b), the authors used TNT (with default settings) as the base method,
since it is the hardest to outperform (in comparison, the results of the PAUP*
implementation of the parsimony ratchet (Bininda-Emonds, 2003) are easier to improve
upon). The Rec-I-DCM3 method produces smaller subproblems by recursively applying
the centroid-edge decomposition until each subproblem is of size at most k. The subtrees
are then computed, merged and resolved bottom-up, using random resolution, to obtain a
binary tree on the full dataset. These steps are repeated for a specified number of
iterations. Figure 1 demonstrates the significant improvement over TNT gained by
employing the Rec-I-DCM3 booster to the method.

 412 Y. Dotsenko et al.

Figure 1 (a) Average MP scores of TNT and Rec-I-DCM3(TNT) on the European RNA dataset,
given as the percentage above the best score. Shown are the data points of five runs of
both methods indicated by small symbols. After the fourth hour there is no overlap of
points and the variances of both the methods are low. Note: the vertical range varies
across the datasets and (b) average MP scores of TNT and Rec-I-DCM3(TNT) on the
RDPII dataset, given as the percentage above the best score. Also shown are the data
points of five runs of both methods indicated by small symbols. Note that the variances
are very low and after the third hour there is no overlap of points

 (a) (b)

4 Parallel Rec-I-DCM3

As described in Section 3, Rec-I-DCM3 is a divide-and-conquer algorithm, which makes
it a natural candidate for parallelisation. For the datasets we studied (up to 14000 taxa),
the problem fits into memory, which simplifies the implementation.

In Figure 2, we present a typical problem decomposition induced by Rec-I-DCM3;
the decomposition contains the main problem, composite subproblems (those which can
be decomposed further: C1, C2), and leaf subproblems (those at the final level of
decomposition: L1–L5).

Figure 2 The Rec-I-DCM3 decomposition: main problem, composite subproblems (C1–C2) and
leaf subproblems (L1–L5)

 PRec-I-DCM3: a parallel framework for fast 413

The natural implementation for PRec-I-DCM3 is to use task-parallelism with a
master-slave model. The master node maintains a database of subproblems: subproblems
available for solving (‘available’), already solved subproblems (‘solved’), and
subproblems currently being solved by a worker (‘active’). During its lifetime, a
subproblem changes states from ‘available’ to ‘active’ to ‘solved’. The master
coordinates the distributed computation and ensures that the system is in a consistent
state throughout the computation.

At the beginning of a PRec-I-DCM3 iteration, the master performs a one-level
decomposition of the main problem, using the current guide tree (see Roshan et al.
(2004b) for details regarding the use of a guide tree). Among the resultant subproblems,
there are usually both leaf and composite subproblems. Next, it dispatches available
subproblems, in decreasing order of their sizes, to the idle workers. The rationale for
distributing larges problem first is that they are likely to take longer to solve. Once a
problem is dispatched, its state is changed from ‘available’ to ‘active’.

Worker processes wait for subproblems from the master. If the problem that a worker
receives is a leaf subproblem, then the worker invokes a standalone solver, such as TNT
or PAUP*, and then returns the resulting subtree to the master. The solver runs without a
time limit, because the leaf subproblems are small (usually not exceeding 2000 taxa). If
the problem received is a composite subproblem, the worker decomposes it further into
subproblems. It selects the largest subproblem among these to perform additional work
on it and returns the remaining subproblems to the master.

When the master receives the solution for a leaf subproblem, it changes its state from
‘active’ to ‘solved’. It checks if all of the leaf's sibling subproblems have been solved; if
so, then it sends all of these subproblems to a worker for merging.

When the master receives the decomposition of a composite subproblem, it adds all of
the child subproblems to the problem database, with the state ‘available’, and marks the
subproblem kept by the worker as ‘active’.

When a worker receives a command to merge a composite subproblem, it receives the
solutions for the child subproblems from the master and applies the strict consensus
merging (Huson et al., 1999a, 1999b; Roshan et al., 2004b), followed by a random
refinement of the resulting tree. Finally, the solution is sent to the master.

When all the subproblems of the main problem are solved, the master merges their
solution trees, then signals the workers to perform the random refinement (making the
tree binary) followed by the search phase on the tree. These random refinements are
performed independently by each worker. Since each worker process has an independent
random number generator, the refinements usually result in different trees. After refining
the merged trees, workers perform the global search phase: they invoke the standalone
solver on the refined trees to search for trees with better parsimony scores. The time of
the global search is limited to a fixed value (referred to as the Global Search Time Limit,
or GSTL), which is specified at program launch. The limit is necessary because the
full-size problem is large, up to 14000 taxa. After finishing the global search phase, each
worker sends its resultant parsimony scores to the master, which, in turn, selects the
minimum score and retrieves the corresponding tree from the worker. This tree is used as
the guide tree for the following iteration.

 414 Y. Dotsenko et al.

A significant advantage of PRec-I-DCM3 over Rec-I-DCM3 is that the former is able
to run several instances of the global search phase in parallel. These instances start from
different points in the tree space, potentially leading to a wider coverage of the tree
search space and a new option for escaping local optima.

The current master-slave scheme implementation is a prototype. For very large
datasets, the master can become a bottleneck, flooded with incoming and outgoing
communication traffic. A distributed master scheme will solve this problem by
distributing the database of subproblems onto several nodes. An appealing technology to
implement this solution is emerging global address space languages, such as Co-Array
Fortran (Numrich and Reid, 1998). They provide the abstraction of a global address space
and support one-sided communication as part of the language. This makes them
well-suited for developing a distributed subproblem database.

5 Experimental settings and results

The platform used for experiments was a cluster of 92 HP zx6000 workstations with
a Myrinet 2000 interconnect. Each workstation contains two 900 MHz Intel Itanium 2
processors with 32 KB/256 KB/1.5 MB of L1/L2/L3 cache, 4 GB of RAM, and the HP
zx1 chipset. Each node is running the Linux operating system (kernel version 2.4.18-e
plus patches). We used Intel’s C/C++ compiler version 8.1 for Itanium. Since
Rec-I-DCM3 uses strict consensus merging with random refinement, a good random
number generator is essential to obtain credible results. Each node used the UNIX
random random number generator initialised with a seed read from the
node’s/dev/random at the beginning of a run.

We ran both Rec-I-DCM3 and PRec-I-DCM3 on the two largest datasets used in
Roshan et al. (2004b): European RNA, a dataset of 11,361 aligned small subunit
ribosomal Bacteria RNA sequences (1,360 sites) (Wuyts et al., 2002), and RDPII, a
dataset of 13,921 aligned 16 s ribosomal Proteobacteria RNA sequences (1,359 sites)
(Maidak et al., 2000). We report the average results of the methods over five runs on the
two datasets.

We investigated two main questions:

• what is the optimal choice of GSTL and subproblem size that yields the best results
of Rec-I-DCM3?

• using the optimal choice of parameters, how does PRec-I-DCM3 perform compared
to Rec-I-DCM3?

To answer the first question, we ran Rec-I-DCM3 on the European RNA and RDPII
datasets for 13 hours, and recorded the average best scores obtained by the method for
various subproblem sizes and GSTL values.

Tables 1 and 2 show the average best scores obtained by Rec-I-DCM3 on the
European RNA and RDPII datasets, respectively. We determined that a maximum
subproblem size of 2000 taxa yields the best results on both datasets, under the conditions
of our experiments. However, a GSTL of 8 minutes gave the best results on the European
RNA dataset, while a GSTL of 32 minutes gave the best results on the RDPII dataset.

 PRec-I-DCM3: a parallel framework for fast 415

Table 1 Average best scores obtained by Rec-I-DCM3 on the European RNA dataset, with
different GSTL values and subproblem sizes

Max. subproblem size\GSTL 4 min 8 min 16 min 32 min 60 min

500 273688 272326 272209 272160 272163
1000 272865 272194 272158 272163 272145
2000 272133 272127 272155 272133 272138
4000 272151 272146 272209 272154 272155

Table 2 Average best scores obtained by Rec-I-DCM3 on the RDPII dataset, with different
GSTL values and subproblem sizes

Max. subproblem size\GSTL 4 min 8 min 16 min 32 min 60 min

500 243545 242005 241131 241093 241088
1000 242529 241275 241140 241069 241042
2000 241054 241044 241062 241017 241068
4000 241135 241154 241118 241131 241097

Using the maximum subproblem size of 2000 taxa, we investigated the behaviour of
Rec-I-DCM3 for different values of GSTL for the duration of 13-hour runs. Figures 3(a)
and 3(b) show that a GSTL of 8 minutes becomes consistently the optimal choice on the
European RNA dataset after about 8 hours and 40 minutes, whereas a GSTL of
32 minutes becomes consistently the optimal choice on the RDPII dataset after about
6 hours and 30 minutes.

Figure 3 Results obtained by Rec-I-DCM3 on the European RNA and RDPII datasets with
maximum subproblem size of 2000 taxa and different GSTL values: (a) European RNA
dataset and (b) RDPII dataset

 (a) (b)

These results demonstrate that different datasets may require different parameter settings
of Rec-I-DCM3 to achieve the best performance. We expect that the choice of these
parameters depends on the quality (in terms of parsimony score and topology) of the tree
used as the start point in each iteration, as well as the evolutionary diameter1 of the
dataset. We will investigate this in future work.

 416 Y. Dotsenko et al.

After determining the optimal choice of maximal subproblem size and GSTL, we
used these values for PRec-I-DCM3 and evaluated its performance against that of
Rec-I-DCM3 under the same settings. To compare the performance of PRec-I-DCM3 and
Rec-I-DCM3, we ran both methods on the two datasets for 13 hours, using a maximal
subproblem size of 2000 taxa, and GSTL values of 8 and 32 minutes for the European
RNA and RDPII datasets, respectively. We plotted the average parsimony score obtained
by the two methods as a function of time, and the topological difference between the best
trees computed by the two methods as computed by the Robinson-Foulds (RF) metric
(Robinson and Foulds, 1981) of topological tree difference. We now briefly review the
RF metric.

Let T be an unrooted tree leaf-labelled by a set S of taxa. An edge e = (u, v) in T
defines a bipartition of S (the set of all leaves on one side of the edge, and the set of all
other leaves). Let C(T) be the set of bipartitions defined by all edges in tree T. The RF
measure between two trees T and T′ is defined as

(| () ()| / | ()|) (| () ()| / | ()|)(,) .
2

C T C T C T C T C T C TRF T T
′ ′ ′− + −′ =

Figure 4(a) shows that, on the European RNA dataset, PRec-I-DCM3 consistently
outperforms Rec-I-DCM3, with the exception of the 2-CPU case. The best parsimony
score computed by Rec-I-DCM3 after 6 and a half hours is computed by PRec-I-DCM3
after only 2 and a half hours using 8 or 16 workers. Further, the best parsimony score
computed by Rec-I-DCM3 after a complete run of 13 hours is computed by
PRec-I-DCM3 (using 8 and 16 workers) after only 7 and a half hours. Finally, despite a
seemingly small difference in the parsimony scores computed by the two methods after
13 hours, Figure 5(a) shows that the actual trees computed by the methods differ in about
25% of their internal edges, according to the RF metric. This result shows a significant
difference between the trees computed by the two methods on the European RNA dataset.

Figure 4 Results obtained by Rec-I-DCM3 and PRec-I-DCM3 on the European RNA dataset
with maximum subproblem size of 2000 taxa and GSTL of 8 minutes, and on the RDPII
dataset with maximum subproblem size of 2000 taxa and GSTL of 32 minutes.
The 1-CPU curves correspond to the Rec-I-DCM3, whereas the other curves correspond
to PRec-I-DCM3 using different numbers of CPUs: (a) European RNA dataset and
(b) RDPII dataset

 (a) (b)

 PRec-I-DCM3: a parallel framework for fast 417

Figure 5 RF values between the best trees obtained by Rec-I-DCM3 on and PRec-I-DCM3
(on 8 cpus) on the: (a) European RNA and (b) RDPII datasets

More dramatic improvements were observed on the RDPII dataset, as Figure 4(b)
demonstrates. On this dataset, the performance of PRec-I-DCM3 is consistently better
than that of Rec-I-DCM3, regardless of the number of workers used for the
PRec-I-DCM3 execution. The best performance of PRec-I-DCM3 on this dataset is
achieved using 8 and 16 worker CPUs, with a slight edge for the 8-CPU implementation
after 11 hours. Notice that the best parsimony score computed by Rec-I-DCM3 after the
complete run of 13 hours is obtained by PRec-I-DCM3 using 8 CPUs after only 4 hours.
Figure 5(b) demonstrates that the difference between the parsimony scores obtained by
the two methods after 13 hours translates into a 40% difference in the topologies
(specifically, numbers of internal edges) of the trees computed by the two methods,
according to the RF measure.

6 Conclusions and future work

The Rec-I-DCM3 method of Roshan et al. was the first technique that allowed a
successful application of parsimony heuristics with high accuracy within reasonable time
limits. Nonetheless, in order to reconstruct, with high accuracy, phylogenetic trees at a
much larger scale, further speed-up and improvements are imperative. In this paper we
introduced the first such improvement through PRec-I-DCM3, a parallel version of the
Rec-I-DCM3 method. We implemented and ran PRec-I-DCM3 on two large datasets.
The results demonstrated a significant improvement over Rec-I-DCM3.

Directions for future work include

• Exploring a distributed master scheme.

• Investigating the difference in optimal parameter choice for different datasets.

• Experimental testing of PRec-I-DCM3 on simulated datasets. Using simulations
allows for investigating the performance of the method with respect to the ‘true’ tree,
which is known in such studies (as opposed to real datasets, in which the true tree is
not known).

 418 Y. Dotsenko et al.

• Existing implementations of TNT and PAUP* are limited to handle up to
16,000-taxon trees. We intend to study the performance of PRec-I-DCM3 on datasets
larger than the ones we used, once tools that handle more than 16,000 taxa are
available.

• Application of Rec-I-DCM3 and PRec-I-DCM3 to Bayesian inference of phylogeny.

Acknowledgments2

The authors would like to thank Erion Plaku for helpful discussions, and Derek Ruths for
providing us with the code for computing the RFs distance between trees.

This work was supported in part by the Department of Energy under Grant
DE-FC03-01ER25504/A000. The computations were performed on an Itanium cluster
purchased with support from the NSF under Grant EIA-0216467, Intel, and
Hewlett Packard.

References
Bininda-Emonds, O.R.P. (2003) Ratchet implementation in PAUP*4.0b10, Available from

www.tierzucht.tum.de:8080/WWW/Homepages/Bininda-Emonds.
Fitch, W.M. (1971) ‘Toward defining the course of evolution: minimum change for a specified tree

topology’, Syst. Zool., Vol. 20, pp.406–416.
Foulds, L.R. and Graham, R.L. (1982) ‘The Steiner problem in phylogeny is NP-complete’,

Advances in Applied Mathematics, Vol. 3, pp.43–49.
Goloboff, P.A. (1999) ‘Analyzing large data sets in reasonable times: solution for composite

optima’, Cladistics, Vol. 15, pp.415–428.
Huson, D., Nettles, S. and Warnow, T. (1999a) ‘Disk-covering, a fast-converging method for

phylogenetic tree reconstruction’, Journal of Computational Biology, Vol. 6, pp.369–386.
Huson, D., Vawter, L. and Warnow, T. (1999b) ‘Solving large scale phylogenetic problems using

DCM2’, Proc. 7th Int’l Conf. on Intelligent Systems for Molecular Biology (ISMB'99), AAAI
Press, pp.118–129.

Maddison, D.R. (1991) ‘The discovery and importance of multiple islands of most parsimonious
trees’, Systematic Biology, Vol. 42, No. 2, pp.200–210.

Maidak, B.L., Cole, J.R., Lilburn, T.G., Parker Jr., C.T., Saxman, P.R., Stredwick, J.M.,
Garrity, G.M., Li, B., Olsen, G.J., Pramanik, S., Schmidt, T.M. and Tiedje, J.M. (2000)
‘The RDP (ribosomal database project) continues’, Nucleic Acids Research, Vol. 28,
pp.173–174.

Michener, C.D. and Sokal, R.R. (1957) ‘A quantitative approach to a problem in classification’,
Evolution, Vol. 11, pp.130–162.

Nakhleh, L., Roshan, U., St. John, K., Sun, J. and Warnow, T. (2001) ‘Designing fast converging
phylogenetic methods’, Proc. 9th Int’l Conf. on Intelligent Systems for Molecular Biology
(ISMB'01), Vol. 17 of Bioinformatics, Oxford U. Press, pp.S190–S198.

Nixon, K.C. (1999) ‘The parsimony ratchet, a new method for rapid parsimony analysis’,
Cladistics, Vol. 15, pp.407–414.

Numrich, R.W. and Reid, J.K. (1998) ‘Co-Array Fortran for parallel programming’, Technical
Report RAL-TR-1998-060, Rutheford Appleton Laboratory, August.

 PRec-I-DCM3: a parallel framework for fast 419

Robinson, D.F. and Foulds, L.R. (1981) ‘Comparison of phylogenetic trees’, Mathematical
Biosciences, Vol. 53, pp.131–147.

Roshan, U., Moret, B.M.E., Williams, T.L. and Warnow, T. (2004a) ‘Performance of supertree
methods on various dataset decompositions’, in Bininda-Emonds, O.R.P. (Ed.): Phylogenetic
Supertrees: Combining Information to Reveal the Tree of Life, Vol. 3 of Computational
Biology, Kluwer Academic Publishers, pp.301–328.

Roshan, U., Moret, M.E., Williams, T.L. and Warnow, T. (2004b) ‘Rec-I-DCM3: a fast algorithmic
technique for reconstructing large phylogenetic trees’, Proceedings of the IEEE
Computational Systems Bioinformatics Conference (CSB) 2004.

Saitou, N. and Nei, M. (1987) ‘The neighbor-joining method: a new method for reconstructing
phylogenetic trees’, Molecular Biology and Evolution, Vol. 4, pp.406–425.

Sanderson, M.J., Baldwin, B.G., Bharathan, G., Campbell, C.S., Ferguson, D., Porter, J.M.,
von Dohlen, C., Wojciechowski, M.F. and Donoghue, M.J. (1993) ‘The growth of
phylogenetic information and the need for a phylogenetic database’, Systematic Biology,
Vol. 42, pp.562–568.

Swofford, D.L. (2002) PAUP*: Phylogenetic Analysis using Parsimony (and other methods),
Sinauer Associates, Sunderland, Mass, Version 4.0.

Warnow, T., Moret, B.M.E. and St. John, K. (2001) ‘Absolute convergence: true trees from short
sequences’, Proc. 12th Ann. ACM-SIAM Symp. Discrete Algorithms (SODA '01), SIAM Press,
pp.186–195.

Williams, T.L., Moret, B.M.E., Berger-Wolf, T., Roshan, U. and Warnow, T. (2004)
‘The relationship between Maximum Parsimony scores and phylogenetic tree topologies’,
Technical Report TR-CS-2004-04, Department of Computer Science, The University of
New Mexico.

Wuyts, J., van de Peer, Y., Winkelmans, T. and de Wachter, R. (2002) ‘The European database on
small subunit ribosomal RNA’, Nucleic Acids Research, Vol. 30, pp.183–185.

Notes
1The evolutionary diameter of a dataset is defined as the maximum number of changes between any
two taxa in the dataset.

2Yuri Dotsenko and Cristian Coarfa contributed equally to this work.

