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Abstract 
 

We have recently demonstrated (La et al, Proteins, 
58:2005) that sequence fragments approximating the 
overall familial phylogeny, called phylogenetic motifs 
(PMs), represent a promising protein functional site 
prediction strategy. Previous results across a 
structurally and functionally diverse dataset indicate 
that phylogenetic motifs correspond to a wide variety 
of known functional characteristics. Phylogenetic 
motifs are detected using a sliding window algorithm 
that compares neighbor joining trees on the complete 
alignment to those on the sequence fragments. In this 
investigation we identify PMs using heuristic maximum 
parsimony trees. We show that when using parsimony 
the functional site prediction accuracy of PMs 
improves substantially, particularly on divergent 
datasets. We also show that the new PMs found using 
parsimony are not necessarily conserved in sequence, 
and, therefore, would not be detected by traditional 
motif (information content-based) approaches. 
 
1. Introduction 
 

The identification of protein functional sites is an 
especially important post-genomic problem. For 
example, knowing the location of functional sites is the 
first step in: understanding enzyme catalysis, assessing 
the result of nonsynonymous single nucleotide 
polymorphisms, and the identification of potential drug 
targets. Many protein functional site strategies have 
been presented in the literature (see [1] for an excellent 
review). Due to the richness of the data, many 
prediction strategies rely on protein structure 
information. However, despite many promising 
advances in high-throughput x-ray crystallography, the 
number of solved structures is still less than 5% of the 
known sequence space. As a consequence, it is 
imperative that accurate strategies for predicting 
protein functional sites from sequence be developed. 
Only after such prediction methods have matured will 
the promised biomedical benefits of large-scale 

sequencing efforts be more forthcoming. We have 
recently [2-4] demonstrated that sequence-based 
phylogenetic motifs (PMs) represent a promising 
functional site prediction strategy. 

PMs [3] are short sequence alignment fragments 
that approximate the overall familial phylogeny. 
Across a structurally and functionally diverse protein 
dataset, we have demonstrated that PMs consistently 
correspond to a wide variety of known functional 
features [2], including catalytic sites, substrate binding 
epitopes, and protein-protein interfaces. Similarity 
between traditional and phylogenetic motifs is 
generally observed. However, there are instances when 
PMs are not (overall) well conserved in sequence. This 
point is enticing because it suggests that PMs are able 
to functionally annotate regions where traditional 
motifs fail. The PM approach is similar in spirit to the 
evolutionary trace (ET) [5-7] and similar [8-10] 
methods. As expected, PM results parallel those from 
ET investigations. Ostensibly, PMs correspond to 
sequence clusters of ET residues, which has the general 
effect of improving their functional site prediction 
accuracy [3]. Whereas the common use of the ET 
method is to map the tree-determinant positions to 
structure [11], no structural information is used in PM 
identification. Furthermore, PMs can be used in many 
of the same ways as traditional motifs [3;4] because 
they are sequence profiles with width, versus a non-
contiguous collection of single alignment positions. 

In this report we use the maximum parsimony (MP) 
optimization criterion [12] for constructing 
phylogenies in our phylogenetic motif detection 
algorithm. Maximum parsimony is an NP-hard 
problem [13] and therefore we resort to hill-climbing 
heuristics in our study. We show that with heuristic 
maximum parsimony trees (obtained using hill-
climbing searches) our algorithm does a better job in 
accurately predicting protein functional sites, 
especially on divergent datasets. We also describe the 
newest implementation of our algorithm which accepts 
trees in the commonly used Newick format, thus 
making PM comparisons vis-à-vis phylogenetic 
reconstruction methods now possible. We implement a 



modified bipartition metric based upon the TREEDIST 
program of the PHYLIP [14] suite phylogeny 
programs. Our previous calculation was specific for 
neighbor-joining [15] trees generated by CLUSTALW 
[16]. 

  
2. Methods 
 
2.1. Phylogenetic motif identification 
 

PMs are identified using the sliding sequence 
window algorithm described in [3]. Starting with a 
multiple sequence alignment, the algorithm parses the 
alignment into all possible windows of some fixed 
width. We find that small (five alignment positions) 
windows result in the most accurate functional site 
predictions, whereas larger windows should be more 
appropriate for alternate uses (e.g. assigning function 
to ORFans). Using standard approaches (described 
below) a phylogenetic tree is constructed for the 
complete alignment and each fragment window. The 
similarity (distance actually) of each window tree 
versus the complete familial tree is computed using a 
modified partition metric (see section 2.2). The 
partition metric scores are recast as Phylogenetic 
Similarity Z-scores (PSZs), which are simply the 
number of standard deviations away from the mean. 
The phylogenetic similarity spectrum, which plots 
PSZs vs. window number, of triosephosphate 
isomerase (TIM) is shown in Figure 1. All overlapping 
windows scoring below an adjustable PSZ threshold 
are grouped into a single PM. Lower partition metrics 
and thus, lower PSZs, indicate increased tree 
similarity. In the TIM example shown in Figure 1, 
seven PMs are identified with the smallest equal to 1 
window and the longest equal to ten windows. In our 
early investigations [3;4], PSZ thresholds were 
manually adjusted to maximize functional site 
prediction accuracy. However, we have recently [2] 
implemented a clustering-based algorithm for a fully 
automated threshold determination. 
 
2.2. Phylogenetic reconstruction methods 
 

In this investigation, two types of phylogenetic 
reconstruction methods (MP and NJ) are used by the 
PM identification algorithm. In all cases, alignments 
are generated using CLUSTALW. CLUSTALW NJ 
results are qualitatively the same as the results from 
PRODIST NJ trees. PRODIST is also part of the 
PHYLIP suite of programs. NJ trees are calculated 
using CLUSTALW. MP trees are computed using a 
TBR-based hill climbing heuristic for maximum 
parsimony implemented in the TNT software  package 

[17]. TBR (Tree Bisection and Reconnection) [12] is a 
common heuristic used to find acceptable solutions to 
the MP problem. The method begins with a starting 
tree and then modifies it to find better ones. In TBR, an 
edge is removed from the starting tree; the new tree 
arises from the reconnection of any two edges within 
the partitions. After trying all possible edge 
reconnections, the best “new” tree is selected. TNT has 
been demonstrated to quickly find accurate solutions to 
the MP problem [18]. 

Figure 1: The phylogenetic similarity spectrum, which 
plots the phylogenetic similarity z-score (PSZ) vs. 
window number, of triosephosphate isomerase is 
presented as a typical case. All overlapping windows 
scoring past the PSZ threshold are grouped into a 
single PM. In this example, the threshold is -1.5, which 
results in the identification of seven distinct PMs. 

 
2.3. Calculating tree distances 
 

TREEDIST calculates the distance between a pair 
of trees (A and B), each with n leaves. The distance is 
calculated using the Symmetric Distance [19], which 
essentially enumerates the number of topological 
differences between the pair. The algorithm splits 
(partitions) each tree into two sub-trees by 
systematically deleting branches. After a pair of 
branches have been removed (one from A and one 
from B), the partition metric is iterated by +1 if a pair 
of partitions is not conserved across the A and B sub-
trees.  

As can be seen in Figure 2, PM window trees 
contain large numbers of zero-length edges. However, 
they also have multiple (generally two or three) ET 
positions that cluster in the same way as the complete 
alignment. It is these positions that are conserving the 
phylogenetic information that leads to them being 
identified as PMs. However, if a strict partition metric 
is used, windows like this are unlikely to score well 
because they are highly unresolved. Tree pairs that 
score well using the strict partition metric tend to look 
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like trees, meaning they have very few unresolved 
nodes. Despite a poor score using the strict partition 
metric, the example shown in Figure 2 clusters in the 
same way as the complete alignment (i.e. into two 
large clades that represent the two major TIM 
subfamilies). Conversely, leaves from the two major 
subfamilies of windows that do score well with the 
strict partition metric tend to be completely 
interspersed. Consequently, a modified partition metric 
is required. 

Figure 2: An example PM window tree (top) taken from 
the triosephosphate isomerase example. The leaves 
are labeled with the corresponding sequence fragment 
and the number of zero-length edges (in parentheses). 
A sequence logo [20] for the window is also provided 
(bottom). In this example, the differences within only 
two evolutionary trace-like positions (with one exception 
in position 4) results in leaf discrimination. 

 
Our modified bipartition metric first contracts all 

internal edges of length at most and including zero. We 
then use the sum of the false positives and false 
negatives as a measure of tree similarity. This measure 
also captures some motifs that are also conserved in 
sequence just because highly conserved windows will 
naturally lead to unresolved trees. The low resolution 
of the trees in turn produces low false positives. Note, 
however, that our modified metric does capture motifs 
which are not conserved in sequence, but are conserved 
in phylogeny (see Section 3.3 for examples).  
 
2.4. Determining prediction accuracy 

 
Determining what constitutes a functional site is an 

exceptionally difficult problem. Several automated 
approaches that rely on structural proximity to known 

functional sites have been developed. However, 
automated approaches inevitably miss known 
functionality. For example, we have shown [2] that an 
automated assessment scheme can incorrectly scores 
one of the seven PMs in Figure 1 as a false positive 
(FP) [21]. The incorrect FP actually corresponds to an 
evolutionarily conserved dimer interface epitope that 
includes several stabilizing monomer-monomer 
interactions [22]. Despite being far removed from the 
active site, binding of a small molecule at the dimer 
interface can inactivate the enzyme [23]. As a 
consequence, it can be argued that this PM is indeed 
functional. This short discussion encapsulates the 
ambiguity involved in functional site definitions and 
the difficulty in assessing their predictions. 

In large-scale analyses, these types of incorrect 
assignments must be tolerated in order to automate the 
process. However, in smaller datasets, more thoughtful 
analyses can be performed. In this report, we 
investigate a structurally and functionally diverse 
dataset of twelve proteins that we are quite familiar 
with. Ten of the twelve are taken from our original PM 
report [3], the eleventh is from [24], and the twelfth is 
a previously unstudied family. Functional site 
prediction accuracy is gauged based on the relative 
number of FPs and true positives (TPs) from a wide 
variety of functional features, including: active sites, 
deleterious mutation sites, co-factor binding sites, 
protein-protein interfaces, etc. These structural 
assessments (FPs and TPs) should not to be confused 
with the tree bipartition similarity discussed at the end 
of section 2.3.  

 
3. Results and discussion 
 
3.1. Comparison to the true partition metric 
 
As described above, it does not make sense to consider 
zero-length edges when comparing the window and 
complete trees. This point is exemplified in Figure 3, 
which compares the TIM phylogenetic similarity 
spectrums using the modified and strict partition 
metrics. No correlation exists between the two plots. 
However, an anti-correlation between the strongest 
singles is qualitatively observed. This result indicates 
that the best scoring windows using the modified 
partition metric correspond to the poorest scoring 
windows using the true partition metric.  

The explanation for this initially surprising result 
follows directly from the discussion in section 2.2. The 
four windows scoring the poorest using the strict 
partition metric are highly conserved (e.g. like the 
sequence window shown in Figure 2). Because there 
are so many zero-length edges, the strict partition 
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metric score is actually reflecting how unresolved the 
tree is. Conversely, after contracting all zero-length 
edges, the modified partition metric highlights the fact 
that the PM window subfamily classification closely 
parallels that of the complete familial tree [3]. Similar 
results (not shown) are observed on the other datasets. 
Hence forth, tree similarity is solely calculated using 
the modified partition metric. 

Figure 3: PSZs of triosephosphate isomerase 
calculated using the modified (solid line with data 
points) and true (grey line) partition metrics. No global 
correlation (R=-0.15) exists between the two plots.  
 
3.2. Comparison of MP vs. NJ results 
 
3.2.1. General observations. Table 1 summarizes the 
comparisons between MP and NJ results. Across the 
structurally and functionally diverse dataset, PMs 
calculated using MP trees generally result in improved 
functional site predictions, especially in more divergent 
datasets. Using MP trees increases the number of TPs 
and decreases FPs. PM predictions using MP trees are 
clearly superior in five of the twelve examples 
investigated, whereas predictions using NJ trees are 
superior only once. The remaining examples are 
determined to be equally good. Table 1 also 
demonstrates that the accuracy of the MP predictions 
improves (relative to the NJ trees) as the families 
become more divergent. 

When considering the equally good results, the 
phylogenetic similarity spectrums of the MP and NJ 
results are virtually superimposable. As a consequence, 
the identified PMs are remarkably conserved. The sole 
exception to this trend is with the TATA-box binding 
protein (TBP). TBP is the smallest family investigated, 
which appears to be the critical point affecting the 
results. (We have previously argued that 25 is the 
minimum number of sequences necessary for accurate 
PM predictions [2].) Despite the TBP PM differences, 
the relative accuracy of the predictions is similar, 

meaning in some cases, MP makes good predictions 
that NJ does not, and in other cases the reverse occurs.  

A critical examination of three examples follows. 
We have previously discussed the general success of 
PM functional site predictions in all three examples. 
Therefore, the following discussion is solely focused 
on the prediction differences using the two different 
phylogenetic reconstruction techniques. 
 
3.2.2. Myoglobin. We begin our molecular-level 
discussions with myoglobin (Mb). Mb is the primary 
mode of oxygen transport in the muscles. Like its 
structural cousin hemoglobin, oxygen is bound to the 
protein via an iron-containing heme group at its active 
site. We have previously demonstrated that PMs are 
structurally clustered around the active site [3], and 
make several structural contacts to the heme.  

The Mb family is interesting for several reasons. 
First, the family has the lowest average Shannon 
entropy of all twelve examples in our dataset, meaning 
it’s the most conserved family. Furthermore, it is the 
only example within the dataset whose PM functional 
site predictions are more accurate using NJ trees. This 
is not entirely unexpected as distance-based methods 
generally perform well in more conserved instances. 
Three stark differences between the MP and NJ results 
are highlighted in Figure 4. The structural locations of 
the observed differences are also highlighted. It can be 
clearly observed from their structural superposition, the 
three additional NJ PMs identified are all structurally 
clustered around the heme, and thus are clearly 
expected to be functional. No other clear differences 
are observed between the two sets of predictions. 

 
3.2.3. Triosephosphate isomerase. We have 
previously demonstrated that TIM PMs correspond to 
several important functional sites [2-4]. In fact, the 
functional role of TIM PMs was the primary focus of 
discussion in [3] and [4]. PMs correspond to all 
electrostatic interactions (H-bonds and salt bridges) 
between the enzyme and substrate and to a well-
conserved monomer-monomer interface region. 
Furthermore, the catalytically important “flexible lid” 
has also been demonstrated to be identified as a PM.  

Figure 4 clearly demonstrates that the results from 
the two methods superimpose remarkably well.  All the 
peaks in one series have corresponding peaks in the 
other. However, there is a small difference between the 
two phylogenetic reconstruction methods. The 
difference (highlighted in Figure 4) results in a 
correctly identified functional site (a TP) using MP 
trees, but not with NJ. While there is a peak at this 
location in the NJ phylogenetic similarity spectrum, the 
peak is not strong enough to be unequivocally distinct 
from noise, whereas it is in the MP results.  
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Figure 4: The phylogenetic similarity spectrum of three examples is presented. The most significant differences within 
the PM predictions using MP (bold lines) and NJ (thin lines) are indicated. Highlighting the alpha-carbons of the PM 
differences allows us to structurally assess their relative accuracy. True positives are colored grey, whereas false 
positives are colored white. Protein substrates are displayed in spacefill and are also colored white. The three 
additional myoglobin (left) PMs (grey spheres) identified using NJ trees are structurally clustered around the heme. In 
the center, the one additional triosephosphate isomerase PM identified using MP trees is structurally proximal to the 
substrate analog. In inorganic pyrophosphatase (right), the true positives identified using MP trees and the false 
positive identified using NJ trees are both highlighted. 
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Table 1: Summary of results  
Protein family1 Average 

Shannon S 
Number 

sequences 
MP vs. 

NJ2 
Comment3 

Myoglobin  1.43 102 NJ NJ predicts +3 TP 

Ammonia channel (cog0004) 1.46 58 push  
Enolase (cog0148) 1.63 72 push  
TATA-box binding protein (cog2101) 1.73 25 push  
Glycerol kinase (cog0554) 1.79 53 push  
Permeases of the major facilitator 

superfamily (cog0477) 
2.18 382 MP see below4 

Inorganic pyrophosphatase (cog0221) 2.19 60 MP MP predicts +1 TP and 
NJ predicts +1 FP 

Glutamate dehydrogenase (cog0334) 2.21 67 push  
Triosephosphate isomerase (cog0149) 2.32 70 MP MP predicts +1 TP 
Acetylglucosaminephosphate 

deacetylase (cog1820) 
2.34 42 MP MP predicts +2 TPs 

Alcohol dehydrogenase (cog1064) 2.48 82 push  
Cytochrome P450 (cog2124) 3.02 71 MP MP predicts +1 TP 

1 Except for the myoglobin family, all sequences are taken from the most recent update of the COG database [25]. 
Myoglobin sequences are taken from the Swissprot database [26]. 2 MP = Maximum parsimony; NJ = Neighbor-
joining. 3 FP = False Positive; TP = True Positive. Numbers presented are net differences. For example, in the case 
Cytochrome P450, MP predicts two additional true positives, beyond a conserved set of predictions, whereas NJ only 
predicts one additional true positive, thus making a net +1 true positive for MP. 4 PMs correctly identifies one of two 
PROSITE [27] definitions of the family, whereas none are identified using NJ trees. Furthermore, the signal to noise 
ratio is much stronger within the phylogenetic similarity spectrum when using the MP trees. 
 
3.2.4. Inorganic pyrophosphatase. Within several 
metabolic reactions, pyrophosphate is frequently 
hydrolyzed to two inorganic phosphates by the enzyme 
inorganic pyrophosphatase (IP). The energetically 
favorable hydrolysis of pyrophosphate is frequently 
used to “pull” anabolic reactions (e.g. protein or 
nucleic acid biosynthesis) to completion. Like the two 
previous examples, we have previously investigated IP 
using PMs, which are generally structurally clustered 
around the active site of the enzyme. 

Two main differences arise in the PM results when 
comparing MP and NJ trees. First, the D-X-D-X-X-D 
PROSITE [27] definition of the family is correctly 
identified when using MP trees, but not NJ. The three 
conserved aspartate residues bind divalent metal ions, 
which are directly involved in catalysis. The second 
difference arises from a prediction the only occurs 
when using NJ trees. The site occurs on the polar 
opposite end as the active site and has no known 
functional significance. As a consequence, the 
prediction is determined to be a FP. 
 
3.3. PMs vs. information content 
 

Going back to our original PMs paper [3], we have 
demonstrated that PMs are frequently motifs in the 
traditional sense, meaning they have low information 
content. As a consequence, PMs seem to bridge the 
two most common techniques for predicting functional 
sites, namely motif-based and ET methods [2]. 

However, we have encountered numerous instances 
when PMs are not overall conserved in sequence, i.e. 
cytochrome P450 (CytP). These unconserved PMs 
occur because of the large number of subfamilies 
within these families.  

Comparing the overall MP and NJ results, we 
observe that PMs from both techniques generally 
correspond to low information content regions in the 
well conserved families. Conversely, in the more 
divergent datasets, PMs using the two methods may or 
may not correspond to one another. In these more 
difficult datasets, well conserved (low information 
content) PMs are generally identified by both methods. 
However, differences arise within the less conserved 
sequence regions. It is the ability of MP to do a better 
job on these difficult windows that leads to its overall 
improvement in the functional site predictions.  

For example, sequence logos of high entropy PMs 
from MP and NJ are compared in Figure 5. The two 
exemplar PMs are taken from CytP, which is the most 
divergent dataset investigated. Both windows have 
PSZs ~ -2.0. However, the fact that no single position 
is conserved within the NJ window makes it highly 
suspect – the standard dogma of molecular evolution 
requires that something be conserved within a 
functional site. Granted, the MP window is not as 
conserved as the one shown in Figure 2, but 
evolutionary conservation in the last four positions is 
evident. Furthermore, conserved subfamily 
discrimination leads to it being identified as a PM. 



Figure 5: Sequence logos [20] comparing typical high 
sequence entropy PMs from MP and NJ results. The 
lack of any conservation within the NJ window makes it 
highly suspect, whereas the subfamily distinctions of 
the complete alignment (so-called ET positions) are 
maintained in the last four alignment positions of the 
MP window. 

 
Globally, our results indicate that MP is doing a 

much better job reconstructing the phylogeny on the 
more difficult cases (less conserved regions). This 
global improvement is evident in Figure 6, which plots 
the PSZ vs. false positive expectation (FPE). FPE gives 
the probability of randomly encountering a given 
sequence window; lower FPEs indicate greater 
conservation. (The technical details of the computation 
are provided in [3].) The results in Figure 6 
demonstrate that fewer suspect PMs (windows with 
FPEs < 0.2) are identified using MP. Moreover, the 
PSZ magnitudes from the best scoring PMs using MP 
actually decrease. This decrease occurs because MP is 
doing a much better job on the more difficult windows. 
The raw partition metrics of the easier windows (i.e. 
best scoring PMs) are generally conserved between NJ 
and MP. However, because the NJ distribution is more 
spread out, the easy PMs are farther from the mean. 
Conversely, the PSZs of MP PMs are decreased in 
magnitude for precisely the opposite reason, namely 
MP identifies more good PMs. With the exception of 
Mb, these trends are conserved across the dataset. 
 
4. Conclusions 
 

PMs represent a promising approach for predicting 
protein functional sites. Previously, phylogenetic trees 
have been determined using distance-based 
approaches. In this paper, we demonstrate that PMs 
identified using MP are generally superior to those 
identified using NJ trees. Not surprisingly, this is 

especially true in more divergent datasets. Future work 
will also compare maximum likelihood trees to the 
previous two as well as examine the effect of different 
alignments on the accuracy of phylogenetic motif 
detection using our algorithm. 

 

 
Figure 6: PSZ vs. FPE for both sets of cytochrome 
P450 results. The overall quality of the MP PMs is 
substantially improved relative to the NJ results. This 
result occurs because MP does a much better job 
reconstructing trees on the more “difficult” windows. 
Similar results are generally obtained in the other 
datasets. 
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