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Abstract: Absolute fast converging phylogenetic recon-
struction methods are provably guaranteed to recover the
true tree with high probability from sequences that grow
only polynomially in the number of leaves, once the edge
lengths are bounded arbitrarily from above and below.
Only a few methods have been determined to be abso-
lute fast converging; these have all been developed in just
the last few years, and most are polynomial time. In this
paper, we compare pre-existing fast converging methods
as well as some new polynomial time methods that we
have developed. Our study, based upon simulating evolu-
tion under a wide range of model conditions, establishes
that our new methods outperform both neighbor joining
and the previous fast converging methods, returning very
accurate large trees, when these other methods do poorly.

Keywords: phylogenetic tree reconstruction, fast con-
verging methods, neighbor joining, maximum likelihood,
maximum parsimony.

1 Introduction

Performance studies of phylogenetic methods
focus upon how accurately methods can recon-
struct the unrooted underlying leaf-labeled tree
(called the “topology”) under various model
conditions. Recent research [8, 9, 17, 33] has
developed a new class of phylogenetic methods,
called fast converging methods, which provably
recover the true tree topology with high proba-
bility given only polynomial length sequences.
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Earlier experimental studies have shown that
some of these methods can recover significantly
more accurate trees than standard methods, such
as neighbor joining (NJ) [29]– perhaps the most
popular polynomial time method in phylogeny
reconstruction. Since some of these fast con-
verging methods are also polynomial time, they
potentially provide a powerful alternative to NJ.

Our first simulation study confirms the ob-
servations that current fast converging methods
[7, 17] can outperform NJ; however, our study
also suggests they outperform NJ only for very
large and evolutionarily divergent datasets.
Under other conditions, the fast converging
methods are much less accurate than NJ. With
this in mind, we designed additional methods,
some of which are provably fast converging.
The best of these new methods are significantly
more accurate than the previous fast converging
methods; not only do they perform as well as
NJ in our experiments, but they outperform NJ
on smaller and less evolutionarily divergent
datasets. Many of our new methods are polyno-
mial time, and while slower than the NJ method,
they still complete within a few minutes, even
for datasets with hundreds of taxa.

The rest of the paper is organized as follows.
Section 2 provides a review of the terminology
that is used in the paper and a discussion of the
theoretical results about fast-convergence. Sec-
tion 3 outlines the experimental methodology.
In Section 4, we present our initial simulation
study comparing two fast converging methods



to NJ. We then discuss the development and
performance analysis of our new methods in
Section 5. Section 6 addresses the performance
of the methods on large trees. In Section 7,
we discuss the consequences of this study,
and in Section 8, we suggest future research.
In particular, we discuss how some of these
methods can be used to provide excellent
approximations to the maximum likelihood (or
maximum parsimony) problems.

2 Terminology & Review

Models: The two models we use for the sim-
ulation study are the Jukes-Cantor model (JC)
and Kimura 2-Parameter (K2P) model with a
gamma distribution (K2P+Gamma). The JC and
the K2P model (without the gamma distribution)
are special cases of the General Markov (GM)
model [30].

The Jukes-Cantor (JC) model [19] is the sim-
plest Markov model of biomolecular sequence
evolution. In that model, a DNA sequence (a
string over � A � C � T � G � ) at the root evolves
down a rooted binary tree T . The assumptions
of the model are: (1) the sites (i.e., the positions
within the sequences) evolve independently and
identically, (2) if a site changes state it changes
with equal probability to each of the remaining
states, and (3) the number of changes of each
site on an edge e is a Poisson random variable
with expectation λ � e � (this is also called the
“length” of the edge e). A JC tree is completely
defined by the pair � T �	� λ � e �
��� .

The Kimura 2-Parameter (K2P) model [20]
is a generalization of the JC model. As with
JC, each site evolves down the tree under the
Markov assumption, but there are two different
types of nucleotide substitutions: transitions
and transversions. The probability of a given
nucleotide substitution depends on the edge and
upon the type of substitution. A K2P tree is
defined by the triplet � T �	� λ � e �
��� ts  tv � , where

ts  tv is the transition/transversion ratio; in our
experiments, we fix this ratio to 2 (one of the
standard settings).

These models describe how a single site
(i.e. a position within the sequence at the root)
evolves down the tree, and it is assumed that
the sites evolve identically and independently.
However, we can also assume that the sites
have different rates of evolution, and that these
rates are drawn from a known distribution.
One popular assumption is that the rates are
drawn from a gamma distribution with shape
parameter α. We use α � 1 for our experiments
under K2P+Gamma. With these assumptions,
we can specify a K2P+Gamma tree just by the
pair � T ��� λ � e �
��� .
Measures of accuracy: There are many
ways of measuring error between trees, but
when the trees are all constrained to be binary,
the Robinson-Foulds (RF) measure [28] is the
preferred technique. Each edge in a tree induces
a bipartition on the set of leaves of the tree. The
RF error is the proportion of bipartitions that
are unique to each tree (i. e. the RF score is the
normalized symmetric difference of the trees).
When this value is 0, the topology of the trees
are identical.

Statistical Performance Issues: We say that
a phylogeny reconstruction method M is sta-
tistically consistent under a model of evolution
if, for every model tree � T ��� λ � e ����� and every
ε � 0, there is a sequence length k such that M
recovers the true tree with probability at least
1 � ε, when the method is given sequences of
length at least k generated on the tree T . Real
data are of limited length. Therefore, the length
k of the sequences affects the performance of
the method M significantly. The convergence
rate of a method M is the rate at which it
converges to 100% accuracy as a function of the
sequence length.
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Fast Converging methods: The largest
and smallest edge-lengths clearly affect the
sequence length needed by any method. So,
we will examine the convergence rate issue by
fixing arbitrarily the largest and smallest “edge-
lengths” (the length of an edge e is defined to
be λ � e � , the expected number of times a random
site will change its nucleotide on e). Once these
bounds are fixed, we can consider the sequence
length a method needs in order to recover the
tree topology exactly with high probability. This
sequence length “requirement” clearly grows
with the number of leaves in the tree. Intuitively,
we will say that a method is “fast-converging”
if the sequence length that suffices in order
to obtain the true tree with high probability is
bounded from above by a polynomial in n. We
now define this concept formally.

Since we examine several different models of
evolution (e.g. JC and K2P+Gamma), we will
let M denote the assumed model of evolution.
We parameterize this model as follows:

Definition 1 Let f � g � 0. Define M f � g �
��� T ��� λ � e �
��� : � e � E � T �
� f � λ � e ��� g � .

We now define absolute fast convergence:

Definition 2 A phylogenetic reconstruction
method Φ is (absolute) fast-converging (afc)
for the model M if, for all positive f � g � ε,
there is a polynomial p such that, for all
� T ��� λ � e �
����� M f � g, on a set S of n sequences
of length at least p � n � generated on T , we have
Pr � Φ � S ��� T ��� 1 � ε.

3 Experimental Design

Simulation Study: Simulation studies are the
standard technique used in phylogenetic perfor-
mance studies (see, for example, [14, 15, 21]).
In a simulation study, a DNA sequence at the
root of a model tree (i.e. tree topology with
branch lengths) is evolved down the tree under

some assumed stochastic model of evolution,
such as the K2P or JC models. This process gen-
erates a set of sequences at the leaves of the tree.
The sequences are then given to the phyloge-
netic reconstruction methods, with each method
producing a tree for the set of sequences. These
reconstructed trees are then compared against
the model tree for topological accuracy. The
process is repeated many times in order to obtain
a statistically significant test of the performance
of the methods under these conditions.

In our study, we have used model trees based
upon biological datasets as well as randomly
generated model trees. We have also explored
performance under two different models: the JC
model, and the K2P+Gamma model. Finally,
unlike most previous studies ([2, 7, 13, 17] are
some of the few exceptions), we have examined
performance for a wide range of numbers of
taxa, ranging from moderately large (50 taxon)
trees to very large (1600 taxon) trees. Due
to space constraints, we will only present a
subset of our data, though we will discuss the
variations we see in the results as well.

In order to obtain statistically robust results,
we followed the advice of McGeoch [24] and
Moret [25] and used a number of runs, each
composed of a number of trials (a trial is a sin-
gle comparison), computed the mean outcome
for each run, and studied the mean and stan-
dard deviation over the runs of these events.
This approach is preferable to using the same
total number of samples in a single run, because
each of the runs is an independent pseudoran-
dom stream. With this method, one can obtain
estimates of the mean that are closely clustered
around the true value, even if the pseudorandom
generator is not perfect.

The standard deviations of the mean out-
comes in our studies is very low– less than 0 � 02,
i.e. two percent, since the possible values range
from 0 to 1. We graph the average of the mean
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Figure 1: The rbcL 500-taxon tree obtained by parsi-
mony analysis by Rice et al. [27] of a collection of 500
rbcL gene (DNA) sequences.

outcomes for the runs, but omit the standard de-
viation from the figures.

Model Trees: We examined two types of
model trees. The first type is random model
trees, and the second type is biologically based
model trees. Both are used in the phylogenetic
performance literature.
Random Model Trees: For each number n of
taxa, we randomly generated model tree topolo-
gies from the uniform distribution on binary n
leaf trees (where the leaves are labeled by 1 � �!� n).
For each edge of each tree topology, we gener-
ated a random number (from the uniform distri-
bution) between 1 and 100, and used that num-
ber as λ � e � , the expected number of changes on
a random site. We then scaled each such “base”
model tree by values between 0.01 and 0.0001.
This process produces trees with average branch
lengths of 0.5 and 0.005. Due to space con-
straints we will only show a subset of these ex-
periments.
Biologically based Model Trees: A biolog-
ically based model tree is a rooted tree with
branch lengths that are inferred on the basis of a
phylogenetic analysis of a real dataset. We have
used several biologically based model trees in
our studies. In each case, we used the model

Figure 2: The Archaea 107-taxon tree is from the Ri-
bosomal Database Project [23] and was constructed using
Weighbor [3].

tree as a “base”, and scaled the edge lengths
of the tree up and down to produce a family of
model trees, in order to test the performance
of different methods under various conditions.
Due to space limitations, we report on the
performance for scalings selected so that NJ has
only 20% error on sequences of length 1000.
The trees we studied are:
500 rbcL tree: Our first biological model tree
(see Figure 1) is based upon a parsimony anal-
ysis of a collection of 500 rbcL gene (DNA) se-
quences (the parsimony analysis was performed
by Rice et al. [27]). This is the same model tree
used by Csűrös in [7]. In addition to the scaling
factor described above, we also used the setting
from [7].
107 ARCHAEA TREE: The second biologi-
cal model tree is the Archaea 107 taxon tree
(see Figure 2) obtained from the Ribosomal
Database Project [23]. It was constructed using
Weighbor [3] from RNA sequences. This tree
proved more challenging than the larger rbcL
tree for many of the methods studied (see Sec-
tions 5 and 6).
85 CRENARCH TREE: We also studied perfor-
mance on the Crenarch 85 taxon tree from [23],
constructed using Weighbor [3] from RNA se-
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quences. The performance on this tree echoed
that on the Archaea tree, and we omit the details
of those experiments (see Section 5 for further
discussion).
140 EUKARYOTE TREE: This 140 taxon tree
is a subtree of the Eukaryote 2055 taxon tree
from [23], constructed using maximum likeli-
hood from RNA sequences. As with the 85 Cre-
narch tree, the performance on this tree echoed
that on the Archaea tree, and we omit the details
of those experiments (see Section 5 for further
discussion).

Experimental platform: Machines: The ex-
periments were run over a period of approxi-
mately three months on approximately 280 dif-
ferent processors running the Debian Linux op-
erating system. These included two clusters: the
phylofarm cluster of 9 dual-processor machines,
which are dedicated to the design and study of
algorithms for phylogenetic reconstruction, and
the SCOUT cluster: a cluster of 132 processors
(16 4-way IBM Netfinity servers with 533-MHz
Xeon processors and 1GB memory/box, 32 2-
way IBM Netfinity servers with 733-MHz Pen-
tium III processors and 512MB memory/box, 2
2-processor 733-MHz Netfinity boxes acting as
file and checkpoint servers). The SCOUT clus-
ter is funded by NSF EIA-9985991 and shared
among five researchers. In addition, we also had
nighttime use of approximately 150 Pentium III
processors located in public undergraduate lab-
oratories.
Software: We used the program Seq-Gen [26]
to randomly generate a DNA sequence for the
root and evolve it through the tree under the
JC model of evolution and the K2P + Gamma
model. We calculate evolutionary distances
appropriately for each model (see [22]).

The software for DCM-NJ was written by
Daniel Huson. To calculate the maximum
likelihood scores of the trees we used PAUP*
4.0 [32]. To visualize the trees, we used the

splitstree package by Huson [16]. For job
management across the cluster and public labo-
ratory machines, we used the Condor software
package [4]. We generated the rest of this
software (a combination of C++ programs and
Perl scripts) explicitly for these experiments.

4 Comparing AFC methods to NJ

Our first study focuses on the two most promis-
ing absolute fast converging methods under
these two models of evolution. JC was chosen
since the original studies [7] showing the
HGT+FP method outperformed NJ on large
trees with high evolution were done under
this model of evolution. K2P+Gamma was
chosen due to its popularity in many recent
phylogenetic studies.

Of our various afc methods, DCM*-NJ [33] is
the best performing (the others are in [8, 9, 17],
and have not performed as well as DCM*-NJ in
our (unpublished) simulation studies). DCM*-
NJ is not polynomial time, since it involves
solving an NP-hard problem, although polyno-
mial time versions of DCM*-NJ in which the
NP-hard optimization problem is approximated
by a greedy heuristic perform well in practice
[17]. On the other hand, HGT+FP is polynomial
time, afc, and very fast. For further information
on the HGT+FP method, see [7], and [5, 6] for
the precursors to this method.

DCM*-NJ is a method which is afc under the
General Markov Model (a general model of evo-
lution of which JC and K2P are special cases)
and is one of the “Disk-Covering Methods”
- see [17, 18] for these earlier Disk-Covering
Methods. The input to DCM*-NJ is an nxn
matrix di j of distances between each pair of
sequences in the input.

DCM*-NJ operates in two phases:
Phase 1: For each q �"� di j � , compute a tree

Tq. Let T �#� Tq : q �$� di j �%� .
Phase 2: Select the best tree from T .
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In our experiments we have modified the tech-
nique from the original version in [17], so that
each Tq is fully resolved (i.e. binary). We
did this by using a fast IAS (inferred ancestral
states) heuristic around each unresolved node
(i.e. node of degree at least four), and applied
NJ to the resultant sequences. See [18] for this
technique. Readers interested in more details of
how Phase I is handled should see [17].

The method used in the second phase of
DCM*-NJ is the Short Quartet Support (SQS)
method, which we now define. Let T be a tree
on a set of taxa S, and let Q � T � denote the set
of trees induced by T on each set of four leaves;
hence a quartet tree t is in Q � T � if and only if the
subtree of T induced by the taxa of t equals t.

Definition 3 Let d be a distance matrix on a
set S of taxa. For a given quartet q on taxa from
S, define diamd � q �&� max � di � j ' � i � j �)( q ���
In other words, diamd � q � is the maximum
distance between the taxa of q. For Q, a
fixed set of quartets, we can define the set
Qw �*� q � Q : diamd � q ��� w � .

Definition 4 Let T be a fixed tree leaf-labeled
by a set S of taxa, Q a fixed set of quartets on
S, and d the distance matrix on S. The support
of T with respect to Q, denoted s � T � Q � , is
max � w : Qw + Q � T �
���

We now present a high-level version of SQS:

PROCEDURE SQS � T � S �
, For each set of four taxa from S,

compute the NJ quartet q; let Q be
the set of all such quartets.

, Return Ti � T such that s � Ti � Q � is
maximum; if more than one such tree
exists, return the one with the small-
est index i.

Note that the support of a tree, as defined,
is a fairly crude estimate of the quality of the

tree; surprisingly, it is sufficient to ensure that
DCM*-NJ is absolute fast converging. In fact, if
we had picked any tree with maximum support,
the result would have been a provably absolute
fast converging method.
Comparison to NJ: We compared DCM*-NJ
and HGT+FP to the popular neighbor joining
(NJ) method of Saitou and Nei [29]. NJ is an
O � n3 � algorithm that is statistically consistent
under the General Markov model of evolution.
However, we do not know if NJ is absolute
fast converging under these models (the only
proven upper bound for its convergence rate is
exponential [1]).
Experimental Procedure: We compared these
methods on a large number of model trees, both
biological and random. We generated 50 sets
of sequences of length 8000 under JC and then
ran experiments on the first 200, 600, 1000,
2000, 4000 and 8000 sites of the same set of
sequences.
Results & Discussion: The relative perfor-
mance between the three methods is quite clear.
We show only our results for the rbcL 500 tree
experiments, due to space limitations.

On the rbcL 500 tree under JC (see Figure
3), our results confirm Csűrös’ results [7] on
the same tree, and show that HGT+FP can out-
perform NJ on this tree given long enough se-
quences, but is worse than NJ on shorter se-
quences. DCM*-NJ and HGT+FP both out-
perform NJ at sequence lengths above 4000,
but NJ is better than DCM*-NJ and HGT+FP
for sequence lengths below 4000. A compar-
ison between DCM*-NJ and HGT+FP shows
that DCM*-NJ has better performance than
HGT+FP at all sequence lengths.

On other trees, the comparison was similar:
HGT+FP was less accurate than DCM*-NJ, and
the relative performance between NJ and these
methods depended upon the number of taxa
and the rate of evolution: as these parameters
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Figure 3: DCM*-NJ vs. NJ vs. HGT+FP on the rbcL
500-taxon tree, under the JC model. Average branch
length is 0.264

increased, NJ’s performance decreased until the
other methods were better than it.
Summary: We conclude that these afc meth-
ods, HGT+FP and DCM*-NJ, can outperform
NJ, but not consistently; they are often worse
than NJ. In general it seems that they obtain im-
proved performance only for large enough trees
with high enough evolutionary rates.

5 New Methods

5.1 Objectives

In this section we describe our new phylogeny
reconstruction methods. Our objective here is
three empirical goals: first, the methods should
be polynomial time and preferably as fast as NJ.
In all cases, the methods must be fast enough
that speed is not a consideration. Second, the
methods should outperform both NJ and the
previous fast-converging methods (with respect
to topological accuracy) in an interesting por-
tion of the parameter space. (For our concerns,
we would like the new methods to outperform

NJ and the previous fast converging methods on
trees with just a few hundred taxa.) And lastly,
the methods should not be worse than NJ or the
previous fast-converging methods (with respect
to topological accuracy) except in uninteresting
portions of the parameter space (where NJ
itself gets very poor reconstructions, such as
missing 50% of the edges). Our earlier studies,
including the ones we presented above, show
that all the earlier afc methods (e.g. DCM*-NJ
and HGT+FP) fail the last criterion.

We elected to modify the technique used
in DCM*-NJ in its second phase (where it
selects the best tree from a set of trees), to see
whether we could obtain improved results in the
two-phase procedure.

5.2 Variants of DCM-NJ

The importance of using a good technique to se-
lect a tree from a set of trees has been observed
by others as well: the original HGT (Harmonic
Greedy Triplets) method also was based upon
a two-phase structure in which a collection of
trees is constructed, and then a best tree selected
from the set. In [6], they used the Minimum
Evolution Criterion to select the best tree from
the set, and observed that it produced signifi-
cantly better trees than their earlier techniques.
In this section, we continue this examination.
Threshold Support (TS): Recall that in SQS,
if there is more than one tree which optimizes
s � Ti � Q � , we return the one in which i is small-
est. In fact, this choice could be replaced by
any tree which optimizes s � Ti � Q � , without loss
of theoretical performance. We now describe a
new technique for selecting a tree from within
the set of trees that have optimal (SQS) support.
This new technique is very simple, produces
another afc method, and has better empirical
performance (discussed below).

Let T be one of the trees in the set T . Let
score � T � be the number of thresholds w such
that all quartets of diameter w agree with T .
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Then the threshold support returns the tree T
which maximizes score � T � from among those
that have maximum (SQS) support.

We also consider the following additional
techniques for the second phase: Maximum
Parsimony (MP), where we select the tree
with the best maximum parsimony score, and
Maximum Likelihood (ML), where we select
the tree with the best maximum likelihood score
(see [12] for both these criteria). We can evalu-
ate the MP score of each tree in the set T in lin-
ear time [11], but ML is a computationally inten-
sive technique, even on a fixed tree [31]. We use
the reasonably efficient approximations for ML
in PAUP* [32]. Each of these methods for thus
produces a different two-phase phylogenetic
method, which we call DCM-NJ+SQS (this
is DCM*-NJ), DCM-NJ+TS, DCM-NJ+MP,
and DCM-NJ+ML, with the obvious meaning.
Of these four phylogenetic methods, only
DCM-NJ+SQS and DCM-NJ+TS are provably
afc. While DCM-NJ+ML is also statistically
consistent, we do not have any bound on its con-
vergence rate; DCM-NJ+MP is not even statisti-
cally consistent under the simplest models [10].

5.3 Comparing DCM-NJ Variants

In this section we report on our performance
study comparing our best methods to NJ and
HGT+FP.

Model Trees and Parameters: We studied the
methods under all the biological trees and sev-
eral random trees of up to 200 taxa. Due to
space limitations, we report only on the perfor-
mance on two biologically based trees: the 107
Archaea tree, and the 500 rbcL tree. The per-
formance on the other trees was similar. We
scaled the edge lengths of each tree up to create
challenging conditions, with the average branch
length of the 500 rbcL tree set to 0.024, and the
average branch length of the 107 Archaea tree
set to 0 � 143.

Dataset Generation: For each model tree
and parameter setting, we generated 50 sets
of sequences each of length 16000 under the
K2P+Gamma model. We then ran the experi-
ments on the first 200, 400, 600, 1000, 2000,
4000, 8000 and 16000 sites on the same set of
sequences.

Modification to DCM-NJ Methods: In order
to decrease running time, we modified the new
methods to produce only a small subset of the
possible trees, by restricting the set of q � di j

to only 50 values, rather than the entire set of
Θ � n2 � distances. Our brief experiments sug-
gest that reducing the number of thresholds can
reduce the topological accuracy, but generally
not by much; furthermore, it greatly reduces the
running time. Hence improved topological ac-
curacy can be obtained by examining more, or
all, of the different thresholds.

Discussion: A comparison between DCM-
NJ+TS and DCM-NJ+SQS on the 107 taxon
tree (see Figure 4) reveals that DCM-NJ+TS is
an improvement over DCM-NJ+SQS. Other ex-
periments (not shown) show DCM-NJ+TS con-
sistently performs at least as well as DCM-
NJ+SQS.

The distinction in performance between
these four methods is not always great; for
example, all the methods do about the same
on the 500 taxon tree (see Figure 5). In sum-
mary, it is clear that the optimal methods are
DCM-NJ+MP and DCM-NJ+ML, followed
by DCM-NJ+TS, and then by DCM-NJ+SQS.
Furthermore, DCM-NJ+MP and DCM-NJ+ML
are indistinguishable in most tests.

5.4 DCM-NJ+ML/MP vs. NJ

We then compared our best methods, i.e. DCM-
NJ+MP and DCM-NJ+ML, to neighbor joining
(NJ) and to HGT+FP. In all our experiments
DCM-NJ+MP and DCM-NJ+ML were more ac-
curate than the other methods. See, for example,
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Figure 4: Comparing variants of DCM-NJ on the Ar-
chaea 107-taxon tree under the K2P+Gamma model. Av-
erage branch length is 0.143.

Figure 6 and Figure 7. A comparison between
DCM-NJ+MP and DCM-NJ+ML is interesting.
In almost all our experiments they performed es-
sentially the same (the small improvement ob-
tained in Figure 4 is the greatest advantage we
saw). This is interesting since DCM-NJ+ML is
statistically consistent, and possible afc, while
DCM-NJ+MP is neither.

6 Very Large Datasets

The earlier experiments show that DCM-
NJ+ML (and DCM-NJ+MP) outperform both
NJ and the earlier afc methods. However, we
did not look at very large trees, that is, trees of
more than 1000 taxa. In this section, we ask
“How will topological errors grow with increas-
ing numbers of taxa, if we fix the average branch
length and the total sequence length available?”
This question thus addresses the feasibility of
inferring the tree-of-life, where the overall evo-
lutionary distance and the number of taxa will
both be large. We examine this by fixing the av-

Figure 5: Comparing variants of DCM-NJ on the rbcL
500-taxon tree under the K2P+Gamma model. Average
branch length is 0.278.

erage branch lengths to two “nice” values.

Parameters: We generated 100 random tree
topologies of 50, 100, 200, 400, 800 taxa and
10 topologies of 1600 taxa with random branch
lengths selected so that the average branch
lengths were either � 05 or � 005. For each tree
topology we then generated sequences of length
1000 under K2P+Gamma model of evolution.
Due to time constraints we could use only 10
runs for 1600 taxa.

Methods: We compared the error rates
of DCM-NJ+MP, DCM-NJ+SQS, NJ and
HGT+FP on each dataset.

Discussion: In both experiments (the low
branch length case, see Figure 8, and the
moderate branch length case, see Figure 9),
certain trends are clear. As the number of taxa
increases, we see an increase in the error rate
(the y-axis is the average RF error) for the
NJ tree, but evidently no increase in error for
HGT+FP nor for the two variants of DCM-NJ
we study (i.e. DCM-NJ+MP and DCM*-NJ).
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Figure 6: DCM-NJ+ML vs. NJ vs. HGT+FP on the Ar-
chaea 107-taxon tree under the K2P+Gamma model. Av-
erage branch length is 0.143.

The relative performance between HGT+FP
and the DCM-NJ variants is clear: the best
method is DCM-NJ+MP, followed by DCM*-
NJ, and then followed by HGT+FP. The relative
performance between NJ and the other methods
depends upon the number of taxa and the rate of
evolution. For the low branch-length trees, NJ
outperforms HGT+FP until 1600 taxa, though
the curve suggests that beyond this number
NJ will be worse than HGT+FP. However,
except for the 50 taxon case, NJ is worse
than the DCM-NJ variants. For the moderate
branch-length trees, NJ is much worse than the
DCM-NJ variants throughout, and even worse
than HGT+FP for the last half of the range.

The figures suggest that the relative ad-
vantage obtained by using DCM-NJ+MP will
increase as the number of taxa increases. This
means that truly large phylogenetic analyses
which might not be feasible under NJ may be
feasible using methods such as DCM-NJ+MP.

Finally, we wish to address the surprisingly

Figure 7: DCM-NJ+ML vs. NJ vs. HGT+FP on the rbcL
500-taxon tree under the K2P+Gamma model. Average
branch length is 0.278.

flat curve for the error rates of both HGT+FP
and DCM-NJ+MP. A flat error rate increase is
impossible, as we know mathematically that all
methods will have an increase in error as the
number of taxa increases, due to the informa-
tion content. We make, therefore, the follow-
ing conjecture. Suppose that NJ’s convergence
rate is actually polynomial in n rather than expo-
nential. (This would not contradict the theory in
[1], which is just an upper bound.) If this were
so, then DCM*-NJ, DCM-NJ+TS, and perhaps
even DCM-NJ+ML would have convergence
rates that are bounded from above by a polyno-
mial in O � loglogn � (see [8, 9, 17]) on random
trees. The error curve of such a method might
very well seem to be initially flat, as these do.

7 Conclusions

In all our experiments, DCM-NJ+MP and
DCM-NJ+ML was at least as accurate as all the
other methods we tested. This was true for all
sequence lengths, all model trees, and all scal-
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Figure 8: DCM*-NJ vs. NJ vs. HGT+FP on random
trees under the K2P+Gamma model. Sequence length is
1000. Average branch length is 0.005.

ings. Furthermore, DCM-NJ+MP and DCM-
NJ+ML were more accurate than the popular
NJ method on a large portion of the parame-
ter space. No earlier polynomial time method
has been able to provide this kind of perfor-
mance advantage, to our knowledge. Further-
more, these methods are polynomial time, and
while slower than NJ, they are still fast enough
to be acceptable. For example, DCM-NJ+MP
completes its analysis on a 107 taxon tree in un-
der three minutes.

8 Future Research

There are several future research directions that
we plan to take. First, the new methods that
incorporate biologically significant optimization
methods, such as maximum likelihood (ML)
and maximum parsimony (MP), as part of the
selection phase can be used as very fast heuris-
tics for obtaining good initial starting points for
ML or MP searches. Our experiments (data not
shown due to space limitations) shows that these

Figure 9: DCM*-NJ vs. NJ vs. HGT+FP on random
trees under the K2P+Gamma model. Sequence length is
1000. Average branch length is 0.05.

methods return much better MP and ML trees
than the NJ tree returns, and almost as quickly.
These optimization problems are of major inter-
est to systematists, and these methods (or similar
methods) may be very helpful.

More generally, the methods we have de-
veloped are all specific examples of a general
phylogenetic-method booster. In fact, this re-
search is part of an ongoing project to explore
the power of the DCM-style methods, which be-
gan with [17].
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