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ABSTRACT

Reconstruction of phylogenetic trees for very large datasets 
is a known example of a computationally hard problem. In 
this paper, we present a parallel computing model for the 
widely used Multiple Instruction Multiple Data (MIMD) 
architecture. Following the idea of divide-and-conquer, our 
model adapts the Recursive-DCM3 decomposition method 
(Roshan et al., 2004) to divide datasets into smaller 
subproblems. It distributes computation load over multiple 
processors so that each processor constructs subtrees on 
each subproblem within a batch in parallel. It finally 
collects the resulting trees and merges them into a 
supertree. The proposed model is flexible as far as methods 
for dividing and merging datasets are concerned. We show 
that our method greatly reduces the computational time of 
the sequential version of the program. As a case study, our 
parallel approach only takes 22.1 hours on four processors 
to outperform the best score to date (found at 123.7 hours 
by the sequential Rec-I-DCM3 program (Roshan et al., 
2004)) on one dataset. Developed with the standard 
message-passing library, MPI, the program can be 
recompiled and run on any MIMD systems.

Keywords: phylogenetic tree, maximum parsimony, 
parallel, divide-and-conquer, MIMD 
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INTRODUCTION
A phylogenetic tree illustrates the evolutionary 
relationships among a group of organisms, or among a 
family of related nucleic acid or protein sequences; e.g. 
how this family might have been derived during evolution. 
It plays a fundamental role in many biological problems 
such as multiple sequence alignment, protein structure and 
function prediction, and drug design (Bull and Wichman, 
2001).

There are two general categories of methods for 
calculating phylogenetic trees: distance-based and 
character-based. The distance-based methods compute a 
matrix of pairwise distances between sequences in an 
alignment, and then construct a tree based entirely on the 
odistance computations. Neighbor-Joining (Saitou and Nei, 
1987), WEIGHBOR (Bruno et al., 2000), BIONJ (Gascuel, 
1997), FASTME (Desper and Gascuel, 2002) and a latest 
approach considering maximum-likelihood estimated 

triplets of sequences (Ranwez and Gascuel, 2002) belong to 
this category.  The disadvantages of distance-based 
methods include the inevitable loss of evolutionary 
information when a sequence alignment is converted to 
pairwise alignment (Steel, 1988) and bad performance on 
large datasets. 
    Character-based methods examine each column of the 
alignment separately and look for the tree that best 
accommodates all of this information, such as maximum 
parsimony (MP) (Camin and Sokal, 1965) or maximum 
likelihood (ML) (Felsentein, 1981). MP chooses tree that 
minimizes number of changes required to explain data. ML, 
under a model of sequence evolution, finds a tree that gives 
the highest likelihood of the observed data. Character-based 
methods are information rich for there is a hypothesis for 
every column in the alignment. However, the MP method is 
NP-hard. ML has unknown complexity (Steel, 1994) and is 
hard to solve in practice. Primary sources of phylogenetic 
tree construction software include PHYLIP (available at 
http://evolution.genetics.washington.edu/phylip.html), 
MrBayes (Huelsenbeck and Ronquist, 2001), PAUP 
(Swofford, 2002), and TNT (Goloboff 1999). 

Reconstructing optimal MP or ML phylogenies on large 
datasets is a particularly challenging task. Many of these 
datasets involve thousands of taxa. Among the current 
heuristic techniques for solving MP on large datasets, TNT 
performs the best (Goloboff 1999, Roshan 2004b, 
Hovenkamp 2004, Meier 2005, Giribet 2005). In addition to 
a very fast implementation of hill-climbing heuristics, TNT 
implements other search strategies, such as divide-and-
conquer and genetic algorithms, which allow the analysis of 
large datasets in a reasonable time limit (much faster than 
other software packages).  

A different class of methods for solving MP (and ML) on 
large datasets are Disk Covering Methods (DCM) (Huson 
et al., 1999; Warnow et al., 2001; Nakhleh et al., 2001; 
Roshan et al., 2004). DCMs are divide and conquer 
methods which divide the problem into smaller subsets, 
reconstruct trees on the subsets using a base method, and 
then merge the subtrees to obtain a tree on the full dataset.
DCMs are booster methods in the sense that they improve 
upon the base method by applying it smaller instances of 
the subproblem. It was previously shown that Rec-I-DCM3 
was able to improve upon the unboosted default heuristics 
of TNT (Roshan 2004,2004b). The default TNT heuristic is 
a combination of its own divide-and-conquer strategy and 
genetic algorithmic techniques (Goloboff 1999).  

 In this paper, we present a parallel model for 
constructing phylogenetic tree in MIMD architecture 
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following the idea of DCM. The goal of our parallel model 
is to exploit the computational power of clusters with a 
distributed memory architecture, high network bandwidth 
and low message passing latency. Clusters of compute 
nodes have become popular in bioinformatics research labs 
and we would like our program to be widely used. In this 
connection, our model is designed to be flexible to employ 
any other methods for dividing and merging dataset.

METHOD
In the following parts, we call our method Parallel REC-I-
DCM3 for ease of writing and reference, but note that other 
division and conquer ideas can be used. A schematic 
flowchart of the Parallel Rec-I-DCM3 is shown in Figure 1.

Fig. 1.  Flowchart of Parallel Rec-I-DCM3

Parallel Rec-I-DCM3 is based on a master-slave 
architecture. It adopts recursive-DCM3 decomposition to 
recursively divide the datasets into smaller subproblems. 
Meanwhile, it keeps a subset guide-tree imposed by the 
recursive calls as the topology of the final merge. This part 
of code was executed both on a master processor and slave 
processors in order to reduce communication between 

processes. Then it uses a scheduling strategy called fixed-
size chunking (Hagerup, 1997) to allocate batches of 
subproblems of one fixed size to available processors. After 
that, each processor computes subtrees on each subproblem 
within a batch by using a base MP method, TNT (Goloboff, 
1999), and sends back these subtrees to a master processor.
The master processor collects and combines the set of 
subtrees into a supertree.  In our approach, the subtrees are 
merged according subset guide-tree order by using Strict 
Consensus Merger (SCM) (Huson et al., 1999) from the 
bottom up. ).  Following that, we apply a hill-climbing MP 
search, TBR (Maddison, 1991), on the supertree in order to 
do a global rearrangement. Finally, the supertree will be 
broadcast to all slave processors for iterative improvement.

The implementation of the Parallel Rec-I-DCM3 and 
subroutine RecDcm3, is presented in the pseudo code 
below.

Algorithm of Parallel Rec-I-DCM3
1. Problem Initialization

1.1 Set S={s0, …, sk-1} of aligned biomolecular 
sequences. Set k=number of sequences, n=number 
of iteration, b=base heuristic (TNT), T=starting 
tree, MS=maximum subproblem size. 

1.2 Initialize variables, myrank=processors’ rank, 
nprocesors=numbers of available processors.

Initialize a subset guide-tree, rurTree, to record 
recursive calls as the topology for merge subtrees.

Initialize, allsubsets, to save a total set of 
subproblems.

      1.3   Initialize MPI environment. 
       MPI_Init(&argc, &argv);

/*Find out my identity, myrank, in the default 
communicator*/
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
/*Find out how may processors, nprocessors, there are 
in the default communicator*/
MPI_Comm_size(MPI_COMM_WORLD,&nprocesses
);

2. For n iteration do
2.1 /*Construct a recursive DCM3 decomposition 

using T|S as the guide tree, producing a total set 
of subproblems, allsubsets =A0, A1  ,…, Am-1 (m
is the total number of subsets). Produce a subset 
guide-tree, rurTree, to keep the merge order. The 
rurTree is expressed in a string format that uses 
parenthesis to start and end subtree groups, 
commas to separate group members, and 
subproblems names to name tree leaves. */
Call RecDcm3(S, MS, b, T).

2.2 Do parallel step
2.2.1 Each available processor reads a fixed-

size chunk (l) of allsubsets, 
l=m/nprocessors..

2.2.2 Each processor applies the base heuristic 
b to construct subtrees for subproblem 
Ai, using T| Ai as the starting tree and 
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letting the resulting tree be ti.. 
( * *( 1)l myrank i l myrank   ).

2.2.3 /*Slave processors, myrank > 0*/
If (myrank > 0 )
       Send the resulting trees ti, 

( * *( 1)l myrank i l myrank   ) to the master 

processor.
/*master processor, myrank=0*/
Else 
       Receive the resulting trees from all 

other processors.
2.3 /*On the master processor, it uses a stack structure 

to read out subtrees t0, t1  ,…, tm-1 according subset 
guide-tree,rurTree.*/
Initialize char* ptr=rurTree;
Initialize tree T’ ;
While(*ptr!=’\0’){
    Switch(*ptr){

Case ’(’:
/*push ‘(’ into the stack*/

        Push ( ( );
        Break;
        Case ‘t i’:
        /*Push subtree t i into the stack*/
        Push(t i) ;
        Case ‘)’:
        Do{

      /*pop out subtrees between ‘(’ and ‘)’ 
from stack*/
      Set temp=Popout();

         }while(temp!=’(’)
T’=Merge the subtrees using SCM
 Push(T’);

                break;
         default: 

break;
                  }
                  treeptr++;

      }//end of while
2.4 Apply tree bisection and reconnection (TBR) 

(Maddison, 1991) search starting from T’ until we 
reach a global optimum. Let T’ be the resulting 
global  optimum.

2.5 Set T=T’.
2.6 Broadcast the new T to every available processor. 

3. MPI_Finalize
Terminates the MPI environment.

Function RecDcm3(S, MS, b, T)

1. Problem Initialization
Input: Set of k sequences S, S={s0, …, sk-1}

   Maximum subproblem size MS
   Base heuristic b
   Starting tree T

2. Construct a DCM3 decomposition using T|S as the 
guide tree, producing subproblems A0, A1  ,…, Ax-1.

For Ai ( 0 i x  -1)

             If  (Ai’s size>MS){
                 Let T|Ai be the result of restricting tree T to Ai 
for i. 
                /*Recursively compute the subsets for Ai*/

  Call RecDCM3(Ai, MS, b, T|Ai).
}
Else{
   Add Ai to allsubsets.
   Update rurTree;
}   

EXPERIMENTAL DESIGN
Overview We compare Parallel Rec-I-DCM3 to the 
sequential Rec-I-DCM3 in our experiments. We studied the 
performance in the initial 24 hours to determine which 
method finds better phylogenetic trees faster.

Datasets The experiments were done on six large 
datasets, some of which are available from  obtained from 
http://www.cs.njit.edu/usman/RecIDCM3.html. The 
datasets we used are (1) 4114 16s rRNaA(1263 sites), (2) 
6281 Eukaryotes ssu rRNA sequences from the European 
rRNA database, (1661 sites), (3) 6458 firmicutes bacteria 
16s rRNA sequences from the RDP (1352 sites), (4) 6722 
three-domain rRNA sequences from Robin Gutell (1122 
sites) (Maidak et al., 2000), (5) 7769 three-domain + 2 
organelle rRNA sequences from Robin Gutell (851 sites), 
(6) 11361 set of all bacteria ssu rRNA sequences from the 
European rRNA database (1360 sites) (Wuyts et al., 2002), 
and (7) 13921 proteobacteria 16s rRNA sequences from the 
RDP (1359 sites) (Maidak et al., 2000).

Implementation and Platform We have implemented 
the parallel algorithm on a cluster of 4 customized compute 
nodes, each with 4 Intel Itanium 733MHz processors, PCI-
66 MHz I/O bandwidth and 266MHz data bus frequency. 
(Note that the full-instrumented parallel Rec-I-dcm3 
requires a minimum of two processors).

RESULTS
Comparing MP scores as a function of time 
At first, we evaluated the performance of our parallelization 
by comparing the MP scores.  In this experiment, our 
criterion is to look at how quickly a method gets within 
0.01% of the best score for there is little change in the tree 
topologies if below the 0.01% threshold (Williams et al., 
2004). We ran five trials of the parallel program on 4 
processors (P4-Rec-I-DCM3) and sequential program (Rec-
I-DCM3) for up to 24 hours each and reported average 
scores. In our study, we defined the “optimal” MP score on 
each dataset to be the best score found over all five runs by 
the two methods in the 24 hours. We defined the “best” MP 
score on each dataset to be the best score found to date 
( http://www.cs.njit.edu/usman/dcm3/recidcm3_csb04_data
.html). On dataset 1, 2, 3, 4 and 5, we took 1/4th of the full 
dataset size as maximum subset sizes. On dataset 6 and 7, 
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the maximum subset sizes are 1/8th of the full dataset sizes.
Our results in Figure 2 through 8 show the average MP 
scores above the best score, as a percentage of the best 
score on the given datasets. The results show that P4-Rec-I-
DCM3 is better than Rec-I-DCM3 on every point in time. 
For a quick view, we only show one run’s scores of P10-
Rec-I-DCM3 on larger Dataset 4, 5, 6 and 7 in Figure 5, 6, 
7 and 8. The same as we expected, P10-Rec-I-DCM3 is 
more quickly move close to the best score than P4-Rec-I-
DCM3, especially in first eight hours.

Dataset 1(4114 taxa, starting from hour 1 to hour 24)

Dataset 1(4114 taxa, starting from hour 8 to hour 24)

Fig. 2. P4-Rec-I-DCM3 VS. Rec-I-DCM3 on Dataset 1. The 
graphs show the datapoints of all five runs of both methods. 

Dataset 2 (6281 taxa, starting from hour 1 to hour 24)

Dataset 2 (6281 taxa, starting from hour 8 to hour 24)

Fig. 3.  P4-Rec-I-DCM3 VS. Rec-I-DCM3 on Dataset 2. The 
graphs show the datapoints of all five runs of both methods.
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Dataset 3 (6458 taxa, starting from hour 1 to hour 24)

Dataset 3 (6458 taxa, starting from hour 8 to hour 24)

Fig. 4.  P4-Rec-I-DCM3 VS. Rec-I-DCM3 on Dataset 3. The 
graphs show the datapoints of all five runs of both methods.

Dataset 4 (6722 taxa, starting from hour 1 to hour 24)

Dataset 4 (6722 taxa, starting from hour 8 to hour 24)

Fig. 5. P4-Rec-I-DCM3 VS. Rec-I-DCM3 on Dataset 4. The 
graphs show the datapoints of all five runs of both methods. P10-
Rec-I-DCM performs better than the average P4-Rec-I-DCM and 
best Rec-I-DCM3 trials at all time points shown.  
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Dataset 5 (7769 taxa, starting from hour 1 to hour 24)

Dataset 5 (7769 taxa, starting from hour 8 to hour 24)

Fig. 6. P4-Rec-I-DCM3 VS. Rec-I-DCM3 on Dataset 5. The 
graphs show the datapoints of all five runs of both methods. P10-
Rec-I-DCM performs better than the average P4-Rec-I-DCM and 
best Rec-I-DCM3 trials at all time points shown.  

Dataset 6 (11361 taxa, starting from hour 1 to hour 24)

Dataset 6 (11361 taxa, starting from hour 8 to hour 24)

Fig. 7. P4-Rec-I-DCM3 VS. Rec-I-DCM3 on Dataset 6. The 
graphs show the datapoints of all five runs of both methods. P10-
Rec-I-DCM performs better than the average P4-Rec-I-DCM and 
best Rec-I-DCM3 trials at all time points shown.  
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Dataset 7 (13921 taxa, starting from hour 1 to hour 24)

Dataset 7 (13921 taxa, starting from hour 8 to hour 24)

Fig. 8. P4-Rec-I-DCM3 VS. Rec-I-DCM3 on Dataset 7. The 
graphs show the datapoints of all five runs of both methods. P10-
Rec-I-DCM performs better than the average P4-Rec-I-DCM and 
best Rec-I-DCM3 trials at all time points shown.  

Comparing the score of the best run of serial and 
parallel
In Table 1 we compare the optimal score in 24 hours found 
by the five runs of Rec-I-DCM3 and P4-Rec-I-DCM3. 
From the table, we can see that except Dataset 1, the 
optimal score was always found by P4-Rec-I-DCM3.

Table 1.  The optimal scores were found by two methods of five runs in 
24 hours.

Dataset No. Rec-I-DCM3 P4-Rec-I-DCM

   1 60895 60899
   2 232618 232580
   3 156235 156213
   4 91918 91899
   5 99870 99866
   6 272157 272142
   7 241064 241010

Speedup of parallel over serial
Scaling of Parallel Rec-I-DCM3 Besides comparing MP 
score, we also conducted parallel speedup tests with these 
datasets range from 4114 sequences to 13,921 sequences.  
On dataset 1, 2, 3, 4 and 5, we took 1/4 of the full dataset 
size as maximum subset sizes. On dataset 6 and 7, the 
maximum subset sizes are 1/8 of the full dataset sizes. In 
order to show the scaling of Parallel Rec-I-DCM3, we 
executed it on 2, 4, 10 processors because the number of 
subsets from dataset 1 to 5 is ten. For uniprocessor 
performance, we used the sequential version as a baseline.  
We ran one iteration of the parallel and sequential code 5 
times for each dataset and calculated the average execution 
time and maximum parsimony scores in order to explore 
the effect of non-determinism on program performance. 
The scaling behavior of parallel Rec-I-dcm3 is shown in 
Figure 9 and 10.

Fig. 9. Time to complete inferring phylogenetic trees from Dataset 
1 to Dataset7 on 1, 2, 4 and 10 processors.
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Fig. 10. Speedup of inferring phylogenetic trees from Dataset 1 to 
Dataset7 on 1, 2, 4 and 10 processors.

Our results show that the program performs well and 
exhibits good speedup. For example, the elapsed time of 
dataset3 is reduced from 3 hours on a single processor to 
1.8 hours on 2 processors, 1.27 hours on 4 processors and 
less than 1 hour on more than 4 processors. The fairly flat 
curve of the elapsed time at the high end of processor 
number suggest that computational gain from further 
distribution of the subsets will be discounted by the 
overhead communication between the processes. Another 
factor limiting the scalability of this algorithm is the 
relatively few sequential portions of the program. One 
portion is global rearrangement by TBR search on the 
complete phylogenetic tree in order to reach a global 
optimal, which will take about half time of one iteration. 
The other is that SCM merges subtrees into a complete 
phylogenetic tree sequentially.

Comparison of best Rec-I-DCM3 against P4-Rec-I-
DCM3 at 24 hours We want to see how long P4-
Rec-I-DCM3 would take to attain the performance of Rec-
I-DCM3. We also ran five trials of the parallel program on 
4 processors and sequential program for up to 24 hours 
each and reported average scores. In the figure 11, we look 
at the ratio of time taken by P4-Rec-I-DCM3 to find the 
best average score to the time taken by Rec-I-DCM3 in 24 
hours On Datasets 2-7, the improvement is about 2 times.

Fig. 11.  Ratio of time taken by P4-Rec-I-DCM3 to find the best 
average score to the time taken by Rec-I-DCM3 in 24 hours.

Comparison of #iterations in the time limit We 
finally compared the number of iterations of P4-Rec-I-
DCM3 with those obtained by the sequential program. 
Figure 12 shows that it obtained more iterations upon 
sequential program.

Fig. 12. Ratio of avg P4-Rec-I-DCM3 #interations to serial Rec-I-
DCM3 #iterations on Dataset 1 to 7 in 24 hours (average over five 
runs)

This study explains why Parallel Rec-I-DCM3 can quickly 
come within a certain range of the best score. It runs more 
iterations than the sequential version.

Conclusion and discussion
We present an efficient parallel approach, Parallel Rec-I-
DCM3, for constructing phylogenetic tree. It is targeted at 
clusters with distributed memory architecture, high network 
bandwidth and low message latency. It provides a fast and 
practicable approach for parallel inference of large 
phylogenetic trees containing up to 10,000 sequences. 
Based on our tests, Parallel Rec-I-DCM3 always finds a 
more optimal tree in less time than Rec-I-DCM3. Because 
Parallel rec-I-dcm3 is based on well-known and trusted 
software, it is easier for the research community to adopt. 

Global rearrangement by TBR search on the complete 
phylogenetic tree is one of the factors to affect speedup. It 
would be interesting to propose a parallel method on this 
part. 

Until now, Parallel Rec-I-DCM3 technique described 
in this paper mainly focuses on MP methods for 
constructing phylogenetic trees. ML is a harder problem 
than MP because it is not known how to compute the ML 
score of a given tree in polynomial time. By using our 
parallel model one could speed-up the tree construction 
with ML-based methods. According to our preliminary (and 
still unpublished) tests, the parallel Rec-I-DCM3 (ML) 
leads not only to a significant reduction of response times 
for large trees but also to a great improvement of final tree 
quality. To our knowledge the parallel Rec-I-DCM3 is 
among the fastest (if not literally the fastest) and most 
accurate approaches for inference of large phylogenetic 
trees with ML. Furthermore, it appears to be the only 
currently available program that is capable of handling 
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huge alignments (over 5.000 taxa) with relatively modest 
memory requirements and reasonably short inference times.
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