
1

Reconstruction of Large Phylogenetic Trees: A Parallel Approach

Zhihua Du and Feng Lin
BioInformatics Research Centre, Nanyang Technological University, Nanyang Avenue, Singapore 639798

Usman W. Roshan
College of Computing Sciences, Computer Sciences Department, New Jersey Institute of Technology, University Heights,

Newark, NJ 07102

ABSTRACT

Reconstruction of phylogenetic trees for very large datasets
is a known example of a computationally hard problem. In
this paper, we present a parallel computing model for the
widely used Multiple Instruction Multiple Data (MIMD)
architecture. Following the idea of divide-and-conquer, our
model adapts the Recursive-DCM3 decomposition method
(Roshan et al., 2004) to divide datasets into smaller
subproblems. It distributes computation load over multiple
processors so that each processor constructs subtrees on
each subproblem within a batch in parallel. It finally
collects the resulting trees and merges them into a
supertree. The proposed model is flexible as far as methods
for dividing and merging datasets are concerned. We show
that our method greatly reduces the computational time of
the sequential version of the program. As a case study, our
parallel approach only takes 22.1 hours on four processors
to outperform the best score to date (found at 123.7 hours
by the sequential Rec-I-DCM3 program (Roshan et al.,
2004)) on one dataset. Developed with the standard
message-passing library, MPI, the program can be
recompiled and run on any MIMD systems.

Keywords: phylogenetic tree, maximum parsimony,
parallel, divide-and-conquer, MIMD

Availability: This program is available from the
authors.

Contact: duzhihua@pmail.ntu.edu.sg

INTRODUCTION
A phylogenetic tree illustrates the evolutionary
relationships among a group of organisms, or among a
family of related nucleic acid or protein sequences; e.g.
how this family might have been derived during evolution.
It plays a fundamental role in many biological problems
such as multiple sequence alignment, protein structure and
function prediction, and drug design (Bull and Wichman,
2001).

There are two general categories of methods for
calculating phylogenetic trees: distance-based and
character-based. The distance-based methods compute a
matrix of pairwise distances between sequences in an
alignment, and then construct a tree based entirely on the
odistance computations. Neighbor-Joining (Saitou and Nei,
1987), WEIGHBOR (Bruno et al., 2000), BIONJ (Gascuel,
1997), FASTME (Desper and Gascuel, 2002) and a latest
approach considering maximum-likelihood estimated

triplets of sequences (Ranwez and Gascuel, 2002) belong to
this category. The disadvantages of distance-based
methods include the inevitable loss of evolutionary
information when a sequence alignment is converted to
pairwise alignment (Steel, 1988) and bad performance on
large datasets.
 Character-based methods examine each column of the
alignment separately and look for the tree that best
accommodates all of this information, such as maximum
parsimony (MP) (Camin and Sokal, 1965) or maximum
likelihood (ML) (Felsentein, 1981). MP chooses tree that
minimizes number of changes required to explain data. ML,
under a model of sequence evolution, finds a tree that gives
the highest likelihood of the observed data. Character-based
methods are information rich for there is a hypothesis for
every column in the alignment. However, the MP method is
NP-hard. ML has unknown complexity (Steel, 1994) and is
hard to solve in practice. Primary sources of phylogenetic
tree construction software include PHYLIP (available at
http://evolution.genetics.washington.edu/phylip.html),
MrBayes (Huelsenbeck and Ronquist, 2001), PAUP
(Swofford, 2002), and TNT (Goloboff 1999).

Reconstructing optimal MP or ML phylogenies on large
datasets is a particularly challenging task. Many of these
datasets involve thousands of taxa. Among the current
heuristic techniques for solving MP on large datasets, TNT
performs the best (Goloboff 1999, Roshan 2004b,
Hovenkamp 2004, Meier 2005, Giribet 2005). In addition to
a very fast implementation of hill-climbing heuristics, TNT
implements other search strategies, such as divide-and-
conquer and genetic algorithms, which allow the analysis of
large datasets in a reasonable time limit (much faster than
other software packages).

A different class of methods for solving MP (and ML) on
large datasets are Disk Covering Methods (DCM) (Huson
et al., 1999; Warnow et al., 2001; Nakhleh et al., 2001;
Roshan et al., 2004). DCMs are divide and conquer
methods which divide the problem into smaller subsets,
reconstruct trees on the subsets using a base method, and
then merge the subtrees to obtain a tree on the full dataset.
DCMs are booster methods in the sense that they improve
upon the base method by applying it smaller instances of
the subproblem. It was previously shown that Rec-I-DCM3
was able to improve upon the unboosted default heuristics
of TNT (Roshan 2004,2004b). The default TNT heuristic is
a combination of its own divide-and-conquer strategy and
genetic algorithmic techniques (Goloboff 1999).

 In this paper, we present a parallel model for
constructing phylogenetic tree in MIMD architecture

2

following the idea of DCM. The goal of our parallel model
is to exploit the computational power of clusters with a
distributed memory architecture, high network bandwidth
and low message passing latency. Clusters of compute
nodes have become popular in bioinformatics research labs
and we would like our program to be widely used. In this
connection, our model is designed to be flexible to employ
any other methods for dividing and merging dataset.

METHOD
In the following parts, we call our method Parallel REC-I-
DCM3 for ease of writing and reference, but note that other
division and conquer ideas can be used. A schematic
flowchart of the Parallel Rec-I-DCM3 is shown in Figure 1.

Fig. 1. Flowchart of Parallel Rec-I-DCM3

Parallel Rec-I-DCM3 is based on a master-slave
architecture. It adopts recursive-DCM3 decomposition to
recursively divide the datasets into smaller subproblems.
Meanwhile, it keeps a subset guide-tree imposed by the
recursive calls as the topology of the final merge. This part
of code was executed both on a master processor and slave
processors in order to reduce communication between

processes. Then it uses a scheduling strategy called fixed-
size chunking (Hagerup, 1997) to allocate batches of
subproblems of one fixed size to available processors. After
that, each processor computes subtrees on each subproblem
within a batch by using a base MP method, TNT (Goloboff,
1999), and sends back these subtrees to a master processor.
The master processor collects and combines the set of
subtrees into a supertree. In our approach, the subtrees are
merged according subset guide-tree order by using Strict
Consensus Merger (SCM) (Huson et al., 1999) from the
bottom up.). Following that, we apply a hill-climbing MP
search, TBR (Maddison, 1991), on the supertree in order to
do a global rearrangement. Finally, the supertree will be
broadcast to all slave processors for iterative improvement.

The implementation of the Parallel Rec-I-DCM3 and
subroutine RecDcm3, is presented in the pseudo code
below.

Algorithm of Parallel Rec-I-DCM3
1. Problem Initialization

1.1 Set S={s0, …, sk-1} of aligned biomolecular
sequences. Set k=number of sequences, n=number
of iteration, b=base heuristic (TNT), T=starting
tree, MS=maximum subproblem size.

1.2 Initialize variables, myrank=processors’ rank,
nprocesors=numbers of available processors.

Initialize a subset guide-tree, rurTree, to record
recursive calls as the topology for merge subtrees.

Initialize, allsubsets, to save a total set of
subproblems.

 1.3 Initialize MPI environment.
 MPI_Init(&argc, &argv);

/*Find out my identity, myrank, in the default
communicator*/
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
/*Find out how may processors, nprocessors, there are
in the default communicator*/
MPI_Comm_size(MPI_COMM_WORLD,&nprocesses
);

2. For n iteration do
2.1 /*Construct a recursive DCM3 decomposition

using T|S as the guide tree, producing a total set
of subproblems, allsubsets =A0, A1 ,…, Am-1 (m
is the total number of subsets). Produce a subset
guide-tree, rurTree, to keep the merge order. The
rurTree is expressed in a string format that uses
parenthesis to start and end subtree groups,
commas to separate group members, and
subproblems names to name tree leaves. */
Call RecDcm3(S, MS, b, T).

2.2 Do parallel step
2.2.1 Each available processor reads a fixed-

size chunk (l) of allsubsets,
l=m/nprocessors..

2.2.2 Each processor applies the base heuristic
b to construct subtrees for subproblem
Ai, using T| Ai as the starting tree and

3

letting the resulting tree be ti..
(* *(1)l myrank i l myrank  ).

2.2.3 /*Slave processors, myrank > 0*/
If (myrank > 0)
 Send the resulting trees ti,

(* *(1)l myrank i l myrank  ) to the master

processor.
/*master processor, myrank=0*/
Else
 Receive the resulting trees from all

other processors.
2.3 /*On the master processor, it uses a stack structure

to read out subtrees t0, t1 ,…, tm-1 according subset
guide-tree,rurTree.*/
Initialize char* ptr=rurTree;
Initialize tree T’ ;
While(*ptr!=’\0’){
 Switch(*ptr){

Case ’(’:
/*push ‘(’ into the stack*/

 Push (();
 Break;
 Case ‘t i’:
 /*Push subtree t i into the stack*/
 Push(t i) ;
 Case ‘)’:
 Do{

 /*pop out subtrees between ‘(’ and ‘)’
from stack*/
 Set temp=Popout();

 }while(temp!=’(’)
T’=Merge the subtrees using SCM
 Push(T’);

 break;
 default:

break;
 }
 treeptr++;

 }//end of while
2.4 Apply tree bisection and reconnection (TBR)

(Maddison, 1991) search starting from T’ until we
reach a global optimum. Let T’ be the resulting
global optimum.

2.5 Set T=T’.
2.6 Broadcast the new T to every available processor.

3. MPI_Finalize
Terminates the MPI environment.

Function RecDcm3(S, MS, b, T)

1. Problem Initialization
Input: Set of k sequences S, S={s0, …, sk-1}

 Maximum subproblem size MS
 Base heuristic b
 Starting tree T

2. Construct a DCM3 decomposition using T|S as the
guide tree, producing subproblems A0, A1 ,…, Ax-1.

For Ai (0 i x  -1)

 If (Ai’s size>MS){
 Let T|Ai be the result of restricting tree T to Ai
for i.
 /*Recursively compute the subsets for Ai*/

 Call RecDCM3(Ai, MS, b, T|Ai).
}
Else{
 Add Ai to allsubsets.
 Update rurTree;
}

EXPERIMENTAL DESIGN
Overview We compare Parallel Rec-I-DCM3 to the
sequential Rec-I-DCM3 in our experiments. We studied the
performance in the initial 24 hours to determine which
method finds better phylogenetic trees faster.

Datasets The experiments were done on six large
datasets, some of which are available from obtained from
http://www.cs.njit.edu/usman/RecIDCM3.html. The
datasets we used are (1) 4114 16s rRNaA(1263 sites), (2)
6281 Eukaryotes ssu rRNA sequences from the European
rRNA database, (1661 sites), (3) 6458 firmicutes bacteria
16s rRNA sequences from the RDP (1352 sites), (4) 6722
three-domain rRNA sequences from Robin Gutell (1122
sites) (Maidak et al., 2000), (5) 7769 three-domain + 2
organelle rRNA sequences from Robin Gutell (851 sites),
(6) 11361 set of all bacteria ssu rRNA sequences from the
European rRNA database (1360 sites) (Wuyts et al., 2002),
and (7) 13921 proteobacteria 16s rRNA sequences from the
RDP (1359 sites) (Maidak et al., 2000).

Implementation and Platform We have implemented
the parallel algorithm on a cluster of 4 customized compute
nodes, each with 4 Intel Itanium 733MHz processors, PCI-
66 MHz I/O bandwidth and 266MHz data bus frequency.
(Note that the full-instrumented parallel Rec-I-dcm3
requires a minimum of two processors).

RESULTS
Comparing MP scores as a function of time
At first, we evaluated the performance of our parallelization
by comparing the MP scores. In this experiment, our
criterion is to look at how quickly a method gets within
0.01% of the best score for there is little change in the tree
topologies if below the 0.01% threshold (Williams et al.,
2004). We ran five trials of the parallel program on 4
processors (P4-Rec-I-DCM3) and sequential program (Rec-
I-DCM3) for up to 24 hours each and reported average
scores. In our study, we defined the “optimal” MP score on
each dataset to be the best score found over all five runs by
the two methods in the 24 hours. We defined the “best” MP
score on each dataset to be the best score found to date
(http://www.cs.njit.edu/usman/dcm3/recidcm3_csb04_data
.html). On dataset 1, 2, 3, 4 and 5, we took 1/4th of the full
dataset size as maximum subset sizes. On dataset 6 and 7,

4

the maximum subset sizes are 1/8th of the full dataset sizes.
Our results in Figure 2 through 8 show the average MP
scores above the best score, as a percentage of the best
score on the given datasets. The results show that P4-Rec-I-
DCM3 is better than Rec-I-DCM3 on every point in time.
For a quick view, we only show one run’s scores of P10-
Rec-I-DCM3 on larger Dataset 4, 5, 6 and 7 in Figure 5, 6,
7 and 8. The same as we expected, P10-Rec-I-DCM3 is
more quickly move close to the best score than P4-Rec-I-
DCM3, especially in first eight hours.

Dataset 1(4114 taxa, starting from hour 1 to hour 24)

Dataset 1(4114 taxa, starting from hour 8 to hour 24)

Fig. 2. P4-Rec-I-DCM3 VS. Rec-I-DCM3 on Dataset 1. The
graphs show the datapoints of all five runs of both methods.

Dataset 2 (6281 taxa, starting from hour 1 to hour 24)

Dataset 2 (6281 taxa, starting from hour 8 to hour 24)

Fig. 3. P4-Rec-I-DCM3 VS. Rec-I-DCM3 on Dataset 2. The
graphs show the datapoints of all five runs of both methods.

5

Dataset 3 (6458 taxa, starting from hour 1 to hour 24)

Dataset 3 (6458 taxa, starting from hour 8 to hour 24)

Fig. 4. P4-Rec-I-DCM3 VS. Rec-I-DCM3 on Dataset 3. The
graphs show the datapoints of all five runs of both methods.

Dataset 4 (6722 taxa, starting from hour 1 to hour 24)

Dataset 4 (6722 taxa, starting from hour 8 to hour 24)

Fig. 5. P4-Rec-I-DCM3 VS. Rec-I-DCM3 on Dataset 4. The
graphs show the datapoints of all five runs of both methods. P10-
Rec-I-DCM performs better than the average P4-Rec-I-DCM and
best Rec-I-DCM3 trials at all time points shown.

6

Dataset 5 (7769 taxa, starting from hour 1 to hour 24)

Dataset 5 (7769 taxa, starting from hour 8 to hour 24)

Fig. 6. P4-Rec-I-DCM3 VS. Rec-I-DCM3 on Dataset 5. The
graphs show the datapoints of all five runs of both methods. P10-
Rec-I-DCM performs better than the average P4-Rec-I-DCM and
best Rec-I-DCM3 trials at all time points shown.

Dataset 6 (11361 taxa, starting from hour 1 to hour 24)

Dataset 6 (11361 taxa, starting from hour 8 to hour 24)

Fig. 7. P4-Rec-I-DCM3 VS. Rec-I-DCM3 on Dataset 6. The
graphs show the datapoints of all five runs of both methods. P10-
Rec-I-DCM performs better than the average P4-Rec-I-DCM and
best Rec-I-DCM3 trials at all time points shown.

7

Dataset 7 (13921 taxa, starting from hour 1 to hour 24)

Dataset 7 (13921 taxa, starting from hour 8 to hour 24)

Fig. 8. P4-Rec-I-DCM3 VS. Rec-I-DCM3 on Dataset 7. The
graphs show the datapoints of all five runs of both methods. P10-
Rec-I-DCM performs better than the average P4-Rec-I-DCM and
best Rec-I-DCM3 trials at all time points shown.

Comparing the score of the best run of serial and
parallel
In Table 1 we compare the optimal score in 24 hours found
by the five runs of Rec-I-DCM3 and P4-Rec-I-DCM3.
From the table, we can see that except Dataset 1, the
optimal score was always found by P4-Rec-I-DCM3.

Table 1. The optimal scores were found by two methods of five runs in
24 hours.

Dataset No. Rec-I-DCM3 P4-Rec-I-DCM

 1 60895 60899
 2 232618 232580
 3 156235 156213
 4 91918 91899
 5 99870 99866
 6 272157 272142
 7 241064 241010

Speedup of parallel over serial
Scaling of Parallel Rec-I-DCM3 Besides comparing MP
score, we also conducted parallel speedup tests with these
datasets range from 4114 sequences to 13,921 sequences.
On dataset 1, 2, 3, 4 and 5, we took 1/4 of the full dataset
size as maximum subset sizes. On dataset 6 and 7, the
maximum subset sizes are 1/8 of the full dataset sizes. In
order to show the scaling of Parallel Rec-I-DCM3, we
executed it on 2, 4, 10 processors because the number of
subsets from dataset 1 to 5 is ten. For uniprocessor
performance, we used the sequential version as a baseline.
We ran one iteration of the parallel and sequential code 5
times for each dataset and calculated the average execution
time and maximum parsimony scores in order to explore
the effect of non-determinism on program performance.
The scaling behavior of parallel Rec-I-dcm3 is shown in
Figure 9 and 10.

Fig. 9. Time to complete inferring phylogenetic trees from Dataset
1 to Dataset7 on 1, 2, 4 and 10 processors.

8

Fig. 10. Speedup of inferring phylogenetic trees from Dataset 1 to
Dataset7 on 1, 2, 4 and 10 processors.

Our results show that the program performs well and
exhibits good speedup. For example, the elapsed time of
dataset3 is reduced from 3 hours on a single processor to
1.8 hours on 2 processors, 1.27 hours on 4 processors and
less than 1 hour on more than 4 processors. The fairly flat
curve of the elapsed time at the high end of processor
number suggest that computational gain from further
distribution of the subsets will be discounted by the
overhead communication between the processes. Another
factor limiting the scalability of this algorithm is the
relatively few sequential portions of the program. One
portion is global rearrangement by TBR search on the
complete phylogenetic tree in order to reach a global
optimal, which will take about half time of one iteration.
The other is that SCM merges subtrees into a complete
phylogenetic tree sequentially.

Comparison of best Rec-I-DCM3 against P4-Rec-I-
DCM3 at 24 hours We want to see how long P4-
Rec-I-DCM3 would take to attain the performance of Rec-
I-DCM3. We also ran five trials of the parallel program on
4 processors and sequential program for up to 24 hours
each and reported average scores. In the figure 11, we look
at the ratio of time taken by P4-Rec-I-DCM3 to find the
best average score to the time taken by Rec-I-DCM3 in 24
hours On Datasets 2-7, the improvement is about 2 times.

Fig. 11. Ratio of time taken by P4-Rec-I-DCM3 to find the best
average score to the time taken by Rec-I-DCM3 in 24 hours.

Comparison of #iterations in the time limit We
finally compared the number of iterations of P4-Rec-I-
DCM3 with those obtained by the sequential program.
Figure 12 shows that it obtained more iterations upon
sequential program.

Fig. 12. Ratio of avg P4-Rec-I-DCM3 #interations to serial Rec-I-
DCM3 #iterations on Dataset 1 to 7 in 24 hours (average over five
runs)

This study explains why Parallel Rec-I-DCM3 can quickly
come within a certain range of the best score. It runs more
iterations than the sequential version.

Conclusion and discussion
We present an efficient parallel approach, Parallel Rec-I-
DCM3, for constructing phylogenetic tree. It is targeted at
clusters with distributed memory architecture, high network
bandwidth and low message latency. It provides a fast and
practicable approach for parallel inference of large
phylogenetic trees containing up to 10,000 sequences.
Based on our tests, Parallel Rec-I-DCM3 always finds a
more optimal tree in less time than Rec-I-DCM3. Because
Parallel rec-I-dcm3 is based on well-known and trusted
software, it is easier for the research community to adopt.

Global rearrangement by TBR search on the complete
phylogenetic tree is one of the factors to affect speedup. It
would be interesting to propose a parallel method on this
part.

Until now, Parallel Rec-I-DCM3 technique described
in this paper mainly focuses on MP methods for
constructing phylogenetic trees. ML is a harder problem
than MP because it is not known how to compute the ML
score of a given tree in polynomial time. By using our
parallel model one could speed-up the tree construction
with ML-based methods. According to our preliminary (and
still unpublished) tests, the parallel Rec-I-DCM3 (ML)
leads not only to a significant reduction of response times
for large trees but also to a great improvement of final tree
quality. To our knowledge the parallel Rec-I-DCM3 is
among the fastest (if not literally the fastest) and most
accurate approaches for inference of large phylogenetic
trees with ML. Furthermore, it appears to be the only
currently available program that is capable of handling

9

huge alignments (over 5.000 taxa) with relatively modest
memory requirements and reasonably short inference times.

REFERENCES
Bruno,W.J., Socci,N.D. and Halpern,A.L. (2000) Weighted

Neighbor Joining: A Likelihood-Based Approach to Distance-
Based Phylogeny Reconstruction. Mol Biol Evol, 17: 189-197.

Bull,J.J. and Wichman,H.A. (2001) Applied evolution. Annual
Review of Ecology and systematics, 32:183-217.

Camin,J. and Sokal,R. (1965) A method for deducing branching
sequences in phylogeny. Evolution, 19:311-326.

Desper,R. and Gascuel,O. (2002) Fast and Accurate Phylogeny
Reconstruction Algorithms based on the Minimum-Evolution
Principle. J Comput Biol, 19:687-705.

Felsentein,J. (1981) Evolutionary trees from DNA sequences: a
maximum likelihood approach. J Mol Evol, 17:368-376.

Gascuel,O. (1997) BIONJ: an improved version of the NJ
algorithm based on a simplemodel of sequence data. Mol Biol
Evol, 14:685-695.

Giribet. G (2005) A review of “TNT: Tree Analysis using New
Technology”. Systematic Biology, 54(1): 176-178.

Goloboff,P.A. (1999) Analyzing large data sets in reasonable
times: solution for composite optima. Cladistics, 15: 415-428.

Hagerup,T. (1997) Allocating independent tasks to parallel
processors: an experimental study. J. Parallel Distrib.
Comput., 47, 185–197.

Hovenkamp P. (2004) Review of TNT – Tree Analysis using New
Technology, Version 1.0. Cladistics, 20:378-383.

Huson,D., Nettles,S. and Warnow,T. (1999) Disk-covering, a fast-
converging method for phylogenetic tree reconstruction.
Journal of Computational Biology, 6:369-386

Huson,D., Vawter,L. and Warnow,T. (1999) Solving large scale
phylogenetic problems using DCM2. in proc. 7th int’l conf. On
intelligent systems for Molecular Biology(ISMB’99), pages
118-129. AAAI Press.

Huelsenbeck,J.P. and Ronquist,F. (2001) MYBAYES: Bayesian
inference of phylogenetic trees. Bioinformatics, 17, 754-755.

Kimmen,S. (2004) Phylogenomic inference of protein molecular
function: advances and challenges. Bioinformatics, 20,170-179.

Maidak,B. et al , (2000) The RDP (ribosomal database project)
continues. Nucleic Acids Research, 28: 173-174.

Maddison,D.R. (1991) The discovery and importance of multiple
islands of most parsimonious trees. Systematic Biology, 42(2):
200-210.

Meier R. and F. Ali (2005) The newest kid on the parsimony
block: TNT (Tree Analysis using New Technology).
Systematic Entomology, 30:179-182.

Nakhleh, L., Roshan,U., John,K.St. Sun,J. and Warnow,T. (2001)
Designing fast converging phylogenetic methods. In proc. 9th
Int’l Conf. On Interligent Systems for Molecular Biology
(ISMB’01), volume 17 of Bioinformatics, pages S190-S198.
Oxford U. press.

Ranwez,V. and Gascuel,O. (2002) Improvement of Distance-
Based phylogenetic Methods by a Local Maximum Likelihood
Approach Using Triplets. Mol Biol Evol, 19:1952-1963.

Roshan,U, Moret,B.M.E., Williams,T.L. and Warnow,T. (2004)
Performance of suptertree methods on various dtaset
decompositions. In O.R>P.Binida-Emonds, editor,
Phylogenetic Supertrees: Combining Information to Reveal the

Tree of Life, Volumn 3 of Computational Biology, pages 301-
328, Kluwer Academics.

Roshan,U, Moret,B.M.E., Williams,T.L. and Warnow,T. (2004)
Rec-I-DCM3: A Fast Algorithmic Technique for
Reconstructing Large Phylogenetic Trees, Proceedings of the
IEEE Computational Systems Bioinformatics conference
(ICSB).

Roshan,U. (2004b) Algorithmic techniques for improving the
speed and accuracy of phylogenetic methods. Ph.D. thesis, The
University of Texas at Austin

Swofford,D. (2002) PAUP*. Phylogenetic Analysis Using
Parsimony(* and other mothods). Version 4.Sinauer
Associates.

Steel,M.A. (1994) The maximum likelihood point for a
phylogenetic tree is not unique. Systematic Biology, 43(4): 560-
564.

Steel,M.A et al. (1988) Loss of information in genetic distances.
Nature, 336, 118.

Saitou,N. and Nei,M. (1987) The nigehbor-joining method: a new
method for reconstructing phylogenetic tree. J Mol Evol, 1987,
4:406-425.

Warnow,T., Moret,B.M.E. and John,K.St. (2001) Absolute
convergence: True from short sequences. In proc. 12th Ann.
ACM-SIAM Symp. Discrete Algorithm (SODA’01), pages
186-195. SIAM press

Wuyts,J., Van de Peer,Y. Winkelmans,T. and De Watchter,R.
(2002) The European database on small subunit ribosomal
RNA. Nucleic Acid Research, 30:183-185.

Williams,T.L., Moret,B.M.E., Berger-Wolf,T., Roshan,U. and
Warnow,T. (2004) The relationship between maximum
parsimony scores and phylogenetic tree topologies. Technical
Report TR-CS-2004-04, Department of Computer Science, The
University of New Mexico.

