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Abstract. We address the problem of estimating the degree to which the evo-
lutionary history of a set of molecular sequences violates the strong molecular
clock hypothesis. We quantify this deviation formally, by defining the “stretch”
of a model tree, with respect to the underlying ultrametric tree (indicated by time).
We then define the “minimum stretch” of a dataset on a tree, and show how this
can be computed optimally in polynomial time. We also present a polynomial
time algorithm for computing a lower bound on the stretch of a given dataset on
any tree. We then explore the performance of standard techniques in systemat-
ics for estimating the deviation of a dataset from a molecular clock. We show
that standard methods, whether based upon maximum parsimony or maximum
likelihood, can return infeasible values (i.e. values for the stretch which cannot
be realized on any model tree), and often under-estimate the true stretch. This
suggests that current estimations of the degree to which datasets deviate from a
molecular clock may significantly underestimate these deviations. We conclude
with some suggestions for further research.

1 Introduction.

A phylogenetic tree is a rooted tree in which the leaves represent the given set of
taxa (species, DNA sequences, etc.), and the internal nodes represent the ances-
tral taxa. The inference of these phylogenetic trees plays a role in many aspects
of biological research, including drug design, the understanding of human mi-
grations, the origins of life, etc.

Most phylogenetic methods produce unrooted trees (or produce rooted trees
whose roots are unreliable). While in some applications the topology of the un-
rooted phylogenetic tree is sufficient, for most applications the rooted tree is
desirable. For example, the famous African Eve study assumed that the loca-
tion of the root was reliable, and used that location in order to infer that humans
evolved out of Africa. Yet rooting a phylogenetic tree is often difficult to do. The
most reliable technique seems to be to use an outgroup (a taxon that should at-
tach to the true tree by an edge off the root); yet if the taxon is too closely related
it may not be an outgroup, and if it is too distantly related, it may be difficult
to reconstruct the location of the attachment to the remainder of the phylogeny,
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due to changes of character states over time which result in the distantly related
taxon looking essentially random with respect to the remaining taxa.

Other approaches for locating the root assume that the dataset is evolving via
a (roughly) molecular clock, which asserts that the expected number of times a
random site will change in � time units is (roughly) proportional to � . The as-
sumption that a strong molecular clock underlies the data can be tested through
the log-likelihood ratio test [4], but there are no tests for estimating the degree of
deviation from a strong molecular clock. Furthermore, the log-likelihood ratio
test is computationally intensive if used appropriately, as it should be used with
an exact method for finding the maximum likelihood tree (a computationally
intractable problem).

The accuracy (or lack thereof) of the molecular clock hypothesis is of sig-
nificant interest to biologists (see [19, 2, 8, 14, 13, 20, 5, 1] for just a few of
the papers that address this question). One of the reasons for this interest is that
datasets that conform closely to a molecular clock can be analyzed for times at
which speciation (or gene duplication) events occurred, thus enabling a more
fine-grained analysis of the molecular processes in the dataset.

In this paper we present a formal definition of the deviation from the molec-
ular clock in a dataset on a tree, which we call the stretch. We then present
two �	��
 �
� algorithms: the first computes the optimal stretch of a given tree for
a given dataset, and the second computes a tree with the optimal stretch for a
given dataset. Furthermore, we describe methods that biologists use for comput-
ing the deviation of a dataset from the molecular clock, and provide an empirical
evidence which shows that the values obtained by using those methods may be
infeasible.

2 Background and Definitions.

We define the terms that are used in the biological literature which pertain to
this paper.

Definition 1. A phylogenetic tree for a set � of taxa is a rooted tree whose
leaves are labeled by the taxa in � , and whose internal nodes represent the
(hypothetical) ancestors of the taxa.

Phylogenetic trees represent the evolutionary history of sets of taxa (genes,
species, etc.). If the taxa under consideration have evolved at equal rates from a
common ancestor (at the root of the tree), then the number of evolutionary events
on every root-to-leaf path in the model tree will tend to be approximately equal.
This is the “strong molecular clock” assumption. More formally, it implies the
following. If we weight the edges of the model tree by the expected number of
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times a random site changes on the edge, then the lengths of all root-to-leaf paths
in the model tree will be the same. In other words, the model tree is ultrametric.

Definition 2. An edge-weighted tree � is called ultrametric if it can be rooted
in such a way that the lengths of all the root-leaf paths in the tree are equal.
An ultrametric distance matrix � is the matrix of leaf-to-leaf distances in an
ultrametric tree.

One way of estimating edge weights for a tree is to let ����� � equal the time in-
dicated by the edge � , so that the weight on edge � is given by ����� ������� ����� � ,
where

�
is the expected number of events per unit time. Similarly, if �����  is the

time since ! and " diverged from a common ancestor (i.e. #$� ���  �&%('*),+.- / ����� � ,
where 0 ���  is the path in � between ! and " ), then � �1 � # � � �2�  is an ultrametric
matrix.

Note that given a rooted ultrametric tree (and hence its matrix 3 ), we can
assign “heights” to the nodes of the tree as follows. Given a node 4 , let ! and "
be two leaves in the tree below 4 . Set 56�7!�8959����4 �:� 3 ���  . By construction, this is
well-defined, and if 4 and ; are nodes in � such that 4 is on the path from ; to-
wards the root (i.e. 4=<�; ), then 56�7!�895>����4 �@? 5A�B!�8959����; � . Hence, an alternative
way of defining an ultrametric matrix is as follows:

Definition 3. A matrix � is an ultrametric matrix if there exists a rooted tree� with function 56�7!�8959����4 �C?ED
defined for each node 4GFIHJ��� � , such that

whenever 4K<L; (i.e. 4 is on the path from ; to the root of � ) we have56�B!M895>����4 � <N56�7!�8959����; � .
Given a rooted tree � with heights assigned to the nodes, we can then com-

pute the distance �	���  between any two leaves ! and " as follows:

� ���  � 5A�B!�865>����O�P�QSR@��!UTV" �W� T
where OMP�QXRY��!WTV" � denotes the most recent common ancestor of ! and " . For most
stochastic models of evolution it is possible to estimate model distances in a
statistically consistent manner (see [10]); this means that the estimates of model
distances converge to the model distances as the lengths of the sequences gen-
erated on the tree increase.

This has the following consequence for estimating the deviation from a
molecular clock: Suppose we are given sequences generated by a stochastic
process operating on a model tree, and we apply a statistically consistent es-
timator for the pairwise distances, thus obtaining a matrix Z7[ �1 ,\ of distances.
If the matrix [ is exactly correct (i.e. [ is the model distance matrix), then we
can set times at the internal nodes, thus defining an ultrametric matrix 3 , so
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that �A���  � 3]���  . However, when the estimates [^�1 are not exactly correct, then
instead we will seek to minimize the following quantity:

Definition 4. We define the stretch of the ultrametric matrix 3 with respect to
the dissimilarity matrix [ as follows:

�_�a`,�B�bPB59cS�V3 �]�ed QXfgZ [ �1 3]�1 T 3 �h [i�1 \ij
�_�a`,�B�bPB59cS�V3 � is thus an estimate of how much the evolutionary rate deviates

from the molecular clock on the tree. For example, if the speed-up or slow-down
on each edge is bounded between P and k7l$P (for some positive constant P ), then�_�b`.�B�bPB5>cX�V3 �nm P . Furthermore, although our matrix [ of estimated pairwise
distances will not generally be exactly correct, for long sequences they will be
close to the model distances, and so the value computed in this way will be a
reasonable estimate of a lower bound of the degree of speed-up or slow down in
the model tree.

The relationship between the stretch of the ultrametric matrix 3 with respect
to the corrected distance matrix [ and the deviation of the rates of change for
the dataset from a strict molecular clock is thus straightforward. If the molecular
clock hypothesis applies to the dataset, then as the sequence length increases, it
will be possible to label the internal nodes of the model tree so that the value
computed by this formula is close to k . On the other hand, if we cannot label
internal nodes so as to obtain an ultrametric matrix 3 so that �_�a`.�o�aPB5pcX�V3 � is
close to k , then we might suspect that the molecular clock hypothesis does not
hold on the dataset (and furthermore, the magnitude of qJrtsvu	�_�a`,�B�bPB59cS�V3 � will
allow us to assess the degree to which it fails to hold).

This discussion suggests two computational problems:

– Problem 1: Min Stretch Tree. The input is a dissimilarity matrix [ , and the
objective is to find an ultrametric matrix 3 with a minimum �]�b`.�o�aPB5pci�V3 �
among all possible ultrametric matrices. We call this �_�a`,�B�bPB5g��[ � :

�_�b`.�B�bPB5v��[ �w� qnrts9uxZ$�]�b`.�o�aPB5>c^�V3 � \
– Problem 2: Min Stretch Fixed Tree � . The input is a dissimilarity matrix [

and a rooted tree � . Our goal is to find an ultrametric assignment of heights
to the nodes of the tree � , thus defining an ultrametric matrix 3 , so that 3
minimizes �_�a`.�o�aPB59ci�V3 � . We call this �]�b`.�o�aPB59cX��� � .
The first problem is of interest because the minimum stretch obtained for

any ultrametric tree is by necessity a lower bound on the stretch of the model
tree on the matrix of estimated pairwise distances. The second problem arises
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when we use techniques such as maximum parsimony, maximum likelihood
(see [7] for details), and neighbor joining [16] to infer trees from biomolecular
sequence datasets.

In this paper, we show that both these problems can be solved exactly in
polynomial time, using techniques from [3]. We solve the first problem through
the use of the general algorithm given in [3], as we show in Section 3. We solve
the second problem by a modification to another algorithm in [3], as we show
in Section 4. Both algorithms run in �	��
 �$� time, i.e., linear in the input size.

3 Finding the stretch when the topology is not fixed.

In [3], Farach et al. described an �	��
 � � algorithm for finding optimal ultrametric
trees with respect to an input distance matrix. We use this algorithm in order to
solve the optimal stretch problem for the case where the tree is not given. We
will describe the general problem they address, and show how our first issue
is a special case of their general problem. Consequently, their �J��
 �7� algorithm
solves this problem.

Definition 5. THE GENERAL ULTRAMETRIC OPTIMIZATION PROBLEM:

– Input: A distance matrix y and two functions z]��fgTU{ � and 8p��f|TU{ � which
take two real arguments such that both z and 8 are monotone non-decreasing
on their first argument, z is monotone non-increasing on { and 8 is mono-
tone non-decreasing on { .

– Output: The smallest { such that there exists an ultrametric matrix 3 in
which for all ��!WTV" � , z]��y~} !UTV",��TU{ �@m 3 �1 m 8���y~} !WTV".��TU{ � .
We show how our problem can be stated in these terms by defining the func-

tions z]��fgTU{ � and 8p��f|TU{ � appropriately.
Because our goal is to find an ultrametric matrix 3 with the minimum

stretch, we want to minimize the value of the following:d Q^fvZ���� ���  U�u - / T u
- /

��� �2�  U� \ .
In other words, we want to find the minimum value of { , such that there exists
an ultrametric matrix 3 satisfying

qJ�$�pZ���� ���  W�u - / T u
- /

��� ���  U� \
m { .

We solve for 3 �1 and obtain the following:

��� ���  U�u - / m { and
u - /
��� ���  U�

m {
which is equivalent to
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��� ���  U�� m 3 �1 m {
y~} !UTV",� .
The problem is reduced now to the following:
Given a distance matrix y , find the smallest { such that there exists an ultra-
metric matrix 3 so that for all !WTV" , ��� �2�  U�� m 3 �1 m {7y�} !WTV",� . In other words, we
wish to solve the General Ultrametric Optimization problem, with z]��fgTU{ �Y�E��
and 8p��f|TU{ �w� {7f .

Hence, we have:

Theorem 1. We can solve the Min Stretch Tree problem in �	��
 �
� time, using
the algorithm in [3].

The algorithm in [3] is therefore useful directly in solving our first problem.
As we will show, the techniques in that algorithm are also useful for solving our
second problem.

4 Finding the stretch when the topology is fixed.

In this section we describe a polynomial time algorithm for solving the prob-
lem of finding the minimum stretch of a fixed tree. More formally, given a tree
topology � and a distance matrix y , defined on the leaves of � , the algorithm
finds an ultrametric assignments of heights to the nodes of � , thus defining an
ultrametric matrix 3 , so that 3 minimizes �_�b`.�B�bPB5 � �V3 � .
Lemma 1. For a given tree � , and upper and lower matrices, y�� and y�� ,
there exists an ultrametric assignment of heights to the internal nodes of � if
the following condition holds for every internal node 4=F�� :d !V
�y��6} !WTV".� ?�d QXf=y��V} � TU�7� ,
where !UTV".T � T and � are leaves of � such that O�P�Qp��!WTV" �:� 4 , and 4 ? OMP�Qp� � TU� � .
Proof. Given the tree � , y�� and y�� , we let the height of node 4nF�� be

56�7!�895>����4 ����d Q^fny��V} � TU�
� ,
where

�
and � are leaves of � such that 4 ? OMP�Q�� � TU� � .

To complete the proof, we show the following two properties of the height
function as we defined it:

– If 4�<�; then 5A�B!�8959����4 ��? 56�7!�8959����; � . Since 4�<�; , it follows that � �ZS��!WTV" ��� !WTV" are leaves below ; \�� ZS��!WTV" ��� !WTV" are leaves below 4 \ � �x� .
Therefore, 56�7!�8959����4 ��� d QXf�y��V} � TU�
� ?�d Q^f�y��b} !WTV",� � 5A�B!�8959����; � ,
where � � TU� � F�� and ��!WTV" � F�� � .
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– y���} !WTV",� m 3]�1 m y��6} !WTV".� for all ! and " . This follows from the definition
of the height function, the fact that 3 �1 � 5A�B!�865>����4 � , where 4 � O�P�Qp��!WTV" � ,
and the given assumption.

Theorem 2. Given a tree � , and a distance matrix y , we can find their devia-
tion from ultrametricity in polynomial time.

Proof. For each internal node 4JF�� , we define
� ��4 �]� Z d Q^f=y�} !WTV".� � !WTV" are

below 4 \ , and �^��4 �]� Z d !�
�y�} !WTV".� � OMP�Q���!UTV" �:� 4 \ .
Using Lemma 1, we want to find the “tightest” y�� and y�� such that for

every internal node 4=F � , the following holds:d !�
�y��6} !WTV",� ?�d QXf=y���} QAT*¡*� ,
where !WTV"iTUQAT and ¡ are leaves of � , such that O�P�Qp��!WTV" �:� 4 , and OMP�Q���Q�T*¡ ��m 4 .

Using the same monotone functions z]��fgTU{ � and 8p��fgTU{ � , that we defined
before, for each node 4nF�� , we find the smallest {X��4 � such that

{X��4 �|� �>��4 �:?£¢.¤¦¥¨§� ¤©¥¨§
Solving for {S��4 � , we obtain

{S��4 �Y?«ª ¢i¤©¥¨§¬ ¤¦¥¨§
To obtain the minimum value of {S��4 � , we choose {S��4 �]��ª ¢.¤¦¥¨§¬ ¤¦¥¨§ . The devia-

tion of the distance matrix y , given the tree topology � , is the maximum value
of {S��4 � , where 4 is any internal node in the tree � .

The algorithm we have described runs in �J��
 �$� time. We can computeO�P�Qp��!WTV" � for all pairs of leaves in �	��
 � � time by first doing a linear-time prepro-
cessing of the tree followed by constant time calculations for each pair of leaves
(See [6]). Therefore, by processing the distance matrix once, we can compute�^��4 � for each 4 . At the same time, for each node 4 , we initialize the value of� ��4 � to

d Q^f�y�} !WTV".� , where ! and " are below 4 . Then, in a bottom-up fashion,
we update

� ��4 � to
d QXfgZ � ��4 � T � ��­ � T � ��; � \ , where ­ and ; are the two children

of 4 . Once
� ��4 � and �>��4 � are computed, finding {S��4 � takes constant time, and

finding the maximum among them takes linear time. Therefore, the algorithm
takes �	��
 �
� time.

5 Simulation Study.

5.1 Introduction

The general design of our simulation study is as follows. We implemented sev-
eral techniques for estimating the stretch of a given dataset: our own technique
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for obtaining a lower bound on the stretch of the model tree on a dataset when
the topology is not given (described in Section 3), the technique for the fixed-
tree case given in Section 4, as well as the two techniques biologist use (and
which we describe below, in Section 5.3). We applied these techniques to a num-
ber of datasets obtained by simulating DNA sequence evolution down model
trees, under the K2P+Gamma model.

5.2 Model Trees

We used K2P+ gamma [9] model trees. We used the r8s software [17] to produce
a number of random birth-death trees with a strong molecular clock. Hence
as the sequence length increases, the stretch on these datasets on the true tree
will tend to k . To obtain trees that are deviated from the molecular clock, we
multiplied each edge in the tree by � � , where f is a random number drawn
uniformly from the range }¦®°¯ts±P$TU¯ts²P*� . We used six different values of for P :
1, 3, 5, 8, 15, and 25. The expected value of the scaling factor on an edge is³W´ �aµ ³�i¶ · ³ , so the expected deviations are moderate even for the values of P that
we examined. The height of the trees generated by r8s is 1. To obtain trees
with additional heights, we scaled those trees by factors of 0.25, 1, and 4. We
set ¸ � k and �W¹$l
�a4 ratio equals 2 for the K2P+Gamma evolution model. We
looked at trees with 20, 40 and 80 taxa, and used sequences of lengths 100, 200,
400 and 800.

5.3 Biological methods for estimating the stretch

Our experimental study examines the accuracy of two methods used by system-
atists for estimating the stretch of a dataset. The two methods have the same
basic structure. First, they obtain an estimate of the phylogenetic tree, using
either Maximum Parsimony or Maximum Likelihood. Such methods not only
produce tree topologies but also edge lengths. For example, with MP, the edge
lengths are the Hamming Distances on each edge, in an optimal labelling of the
internal nodes of the tree so as to minimize the sum of the Hamming Distances.
In Maximum Likelihood, the edge lengths represent the expected number of
times a random site changes on the edge. Given either way of defining edge
lengths, we can then define distances between nodes 4 in the tree and leaves! , and we indicate such a distance by the notation [A��46TU! � . These trees are then
rooted using some technique (for example, the “mid-point” technique, whereby
the midpoint of the longest path in the tree is identified with the root of the tree).
Then, the stretch of the rooted edge-weighted tree � ( ;���� � denotes the weight
of edge � in � ) is computed as follows:
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���74A���²TU; �W�w� qJ�$��Z ª c ¤¦¥ � � §c ¤©¥ �  § � 4 is a node in � and ! and " are leaves below 4 \
where [A��4ATU! �w�G%N' ;���� � , where � is an edge on the path from node 4 to leaf ! .

We denote by � �B4X!�QX�b!�º,
�»]��� � the stretch of tree � as computed by the
previous formula, when the branch lengths are estimated using criterion ¼ .
In this paper we consider � �B4S!VQS�a!�º,
 �

+ ��� � and � �B4S!VQS�a!�º,
 �¾½ ��� � , and we
used PAUP* 4.0 [18] to assign branch lengths. In addition, we also consider���74S!�QX�b!Vº$
 �À¿ c

' �V��� � , where the model branch lengths are used.

Note that this way of estimating the stretch of a tree with respect to an in-
put does not verify that the internal nodes can be assigned heights so that the
resultant values are feasible solutions to the stretch problem. Therefore, one of
our objectives in our study was to determine whether these calculations did pro-
duce feasible solutions, or not. For the same reason, we do not call the resultant
value the stretch of the tree with respect to the estimated distances, but rather
the deviation of the tree with respect to the estimated distances.

There are several places where this technique can err: in particular, in ob-
taining a good estimate of the rooted tree, and then in assigning edge lengths.
We have simplified the problem by studying the accuracy of these methods as-
suming that the rooted model tree is given to the methods; hence, we only use
the methods to infer branch lengths and not to also find the best tree. We then
compare the estimated values for the stretch obtained by those methods against
the lower bound for the rooted model tree.

5.4 Simulations

We used the program Seq-Gen [15] to randomly generate a DNA sequence
for the root and evolve it through the tree under the K2P + Gamma model. We
calculated K2P+Gamma distances appropriately for the model (see [10]). We
then applied the algorithm in Section 3 to compute the tree with the optimal
stretch (and hence the optimal stretch). We also applied our algorithm (Section
4) to the dataset on the model topology, as well as the other techniques where
the MP and ML branch length estimates of the model topology were computed.

In order to obtain statistically robust results, we used a number of runs, each
composed of a number of trials (a trial is a single comparison), computed the
mean for each run, and studied the mean over the runs of these events. This
method enables us to obtain estimates of the mean that are closely grouped
around the true value. This method was recommended by McGeoch [11] and
Moret [12].
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6 Results and analysis.

In this section we report on the results of the experimental studies that we carried
out according to the description in Section 5. We examine the performance of
the following methods for estimating the stretch:

1. The minimum stretch of the dataset: �_�b`.�B�bPB5v��[ � , where [ is the distance
matrix of the dataset on the model tree.

2. The stretch of the ultrametric model tree (i.e. the model tree before we devi-
ate the branch lengths away from ultrametricity) with respect to the model
branch lengths obtained after deviation from ultrametricity. Thus, this is�_�a`,�B�bPB56ÁÂ�V3 � where 3 is the ultrametric matrix underlying the model tree,
and � is the additive matrix of the model tree).

3. The minimum stretch of the dataset on the rooted model tree topology:�_�a`,�B�bPB59cS��� � , where � is the model topology.
4. The deviation of the rooted model tree topology with respect to MP branch

lengths: � �B4X!�QS�a!�º,
 �
+ ��� � .

5. The deviation of the rooted model tree topology with respect to model branch
lengths: � �B4X!�QS�a!�º,
 �À¿ c

' �V��� � .
6. The deviation of the rooted model tree topology with respect to ML branch

lengths: � �B4X!�QS�a!�º,
 �¾½ ��� � .
(Recall that the deviation of the rooted model tree is calculated using the tech-
nique used by systematists, and hence does not produce a number that is guar-
anteed to be a feasible solution to the stretch problem.)

The values plotted in the figures are the mean of 30 runs for each experi-
mental setting.

The values of � �B4X!�QX�b!�º,
 �¾½ ��� � were too large (sometimes in the thou-
sands); see Figure 3. Therefore, we did not plot those values in the graphs, since
they almost always either give infeasible solutions or stretch values that are too
large compared to the actual stretch.

Figures 2(a), 1(c), 1(d) and 1(a) show clearly that the values of the �_�a`,�B�bPB5g��[ �
and ���74S!�QX�b!Vº$
 �À¿ c

' �V��� � are equal when the the model tree is ultrametric. How-
ever, as the deviation from the molecular clock increases, we see that the gap
between those two values widens. Therefore, even if we had a method that could
estimate the branch lengths of a tree with very high accuracy, the method that
biologists use computes values that are far from the values of the true stretch.

By definition, �_�a`.�o�aPo5g��[ �:m �_�b`.�B�bPB56cS��� � for all trees � , and Figures 1 and
2 demonstrate this observation empirically. Figures 2(a) and 2(b) demonstrate
that our methods “converge” to the true stretch value on ultrametric datasets,
as the sequence length increases. In these two figures, we notice that the two
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curves corresponding to the values of �_�a`.�o�aPo5g��[ � and �_�a`.�o�aPo5�ÁÂ�V3 � go to 1 as
the sequence length increases.

Figures 1(a), 1(b), 1(c) and 2(c) show that � �B4X!�QS�a!�º,
 �
+ ��� � are sometimes

inconsistent with the definition of the stretch, since we see the values computed
by this method are lower than �_�a`,�B�bPB5g��[ � . Figure 2(d) shows the value com-
puted by the same method is greater than the stretch of the dataset, but is lower
than the stretch of the dataset on the same topology ( �_�a`,�B�bPB5�Á��V3 � ), which is an
inconsistent result. This means that the values computed by � �B4X!�QX�b!�º,
 �

+ ��� �
are sometimes infeasible.

7 Conclusions.

In this paper we defined the concept of stretch, which is the amount of deviation
of a dataset from ultrametricity. We presented two theoretical results in this
paper: the first is an �	��
 �
� algorithm for computing the optimal stretch of any
ultrametric matrix for a given dataset, and the second is an �J��
 � � algorithm for
computing the optimal stretch of a fixed tree with respect to a given dataset.

The experimental study is surprising, and shows that the two standard meth-
ods (MP and ML) used by systematists to estimate the degree to which a dataset
deviates from the strong molecular clock hypothesis are quite faulty. Both can
produce estimates that are not even feasible (i.e. no way of assigning heights to
the nodes of any tree would produce such values), and the ML method in par-
ticular can produce enormous values, clearly much larger than is needed. More
generally, our study suggests that accurate estimates of the deviation from the
molecular clock may be beyond what can be inferred using existing stochastic
models of evolution.

References

[1] F. Bossuyt and M.C. Milinkovitch. Amphibians as indicators of early tertiary “Out-of-
India” dispersal of vertebrates. Science, 292:93–95, 2001.

[2] V. Dvornyk, O. Vinogradova, and E. Nevo. Long-term microclimatic stress causes rapid
adaptive raditiona of kaiABC clock gene family in a cyanobacterium Nostoc linckia,
from ‘evolution canyons’ I and II, Israel. Proc. National Academy of Sciences (USA),
99(4):2082–2087, 2002.

[3] M. Farach, S. Kannan, and T. Warnow. A robust model for finding optimal evolutionary
trees. Algorithmica, 13(1):155–179, 1995.

[4] N. Goldman. Statistical tests of models of DNA substitution. J. Mol. Evol., 36:182–198,
1993.

[5] X. Gu and W-H. Li. Estimation of evolutionary distances under stationary and nonsta-
tionary models of nucleotide substitution. Proc. Natl. Acad. Sci. (USA), 95:5899–5905,
1998.



12 Nakhleh et al.

[6] D. Gusfield. Algorithms on strings, trees, and sequences. Cambridge University Press,
1997.

[7] D.M. Hillis, C.Moritz, and B.K. Mable. Molecular Systematics. Sinauer Associates, Sun-
derland, MA, 1996.

[8] S. Y. Kawashita, G. F. Sanson, O. Fernandez, B. Zingales, and M. R. Briones. Maximum-
likelihood divergence date estimates based on rRNA gene sequences suggest two scenarios
of trypanosoma crazi intrapsecific evolution. Mol. Biol. Evol., 18(12):2250–2259, 2001.

[9] M. Kimura. A simple method for estimating evolutional rates of base substitutions through
comparative studies of nucleotide sequences. J. Mol. Evol., 16:111–120, 1980.

[10] W.-H. Li. Molecular Evolution. Sinauer Assoc., 1997.
[11] C.C. McGeoch. Analyzing algorithms by simulation: variance reduction techniques and

simulation speedups. ACM Comp. Surveys, 24:195–212, 1992.
[12] B.M.E. Moret. Towards a discipline of experimental algorithmics. In Proc. 5th DIMACS

Challenge. available at www.cs.unm.edu/moret/dimacs.ps.
[13] M. Nei, P. Xu, and G. Glazko. Estimation of divergence times from multiprotein sequences

for a few mammalian species and several distantly related organisms. Proc. Natl. Acad.
Sci. (USA), 98(5):2497–2502.

[14] M. Nikaido, K. Kawai, Y. Cao, M. Harada, S. Tomita, N. Okada, and M. Hasegawa.
Maximum likelihood analysis of the complete mitochondirial genomes ofeutherians and
a reevaluation of the phylogeny of bats and insectivores. J. Mol. Evol., 53(4-5):508–516,
2001.

[15] A. Rambaut and N.C. Grassly. Seq-gen: An application for the monte carlo simulation
of dna sequence evolution along phylogenetic trees. Comp. Applic. Biosci., 13:235–238,
1997.

[16] N. Saitou and M. Nei. The neighbor-joining method: A new method for reconstructing
phylogenetic trees. Mol. Biol. Evol., 4:406–425, 1987.

[17] Michael Sanderson. available from http://loco.ucdavis.edu/r8s/r8s.html.
[18] D. Swofford. PAUP*: Phylogenetic analysis using parsimony (and other methods), version

4.0. 1996.
[19] L. Vawter and W.M. Brown. Nuclear and mitochondrial DNA comparisons reveal extreme

rate variation in the molecular clock. Science, 234(4773):194–196, 1986.
[20] Z. Yang, I.J. Lauder, and H.J. Lin. Molecular evolution of the hepatitis B virus genome. J.

Mol. Evol., 41(5):587–596, 1995.



Estimating the Deviation From a Molecular Clock 13

(a) taxa=40, E(stretch)=3.87, scale=4 (b) taxa=40, E(stretch)=2.76, scale=0.25

(c) taxa=40, E(stretch)=1.49, scale=4 (d) taxa=40, E(stretch)=2.76, scale=4

Fig. 1.
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(a) taxa=80, E(stretch)=1, scale=1 (b) taxa=20, E(stretch)=1, scale=0.25

(c) taxa=80, E(stretch)=3.87, scale=4 (d) taxa=80, E(stretch)=3.87, scale=0.25

Fig. 2.



Estimating the Deviation From a Molecular Clock 15

Fig. 3. taxa=20, E(stretch)=3.87, scale=0.25


