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ABSTRACT

The classification of whole slide images plays an important
role in understanding and diagnosing cancer. Pathologists
typically have to work through numerous pathology images
that can be in the order of hundreds or thousands which takes
time and is prone to manual error. Here we investigate an
automated method based on a random depthwise convolu-
tional neural network (RDCNN). In previous work this net-
work has shown to achieve high accuracies for image similar-
ity. We conjecture that for pathology images similarity may
play an important role in accurate classification of the images.
We evaluate RDCNN against trained deep convolutional neu-
ral networks VGG16 and ResNet50 on four pathology image
datasets. We find RDCNN to give the average highest ac-
curacy across the four datasets. On two datasets RDCNN is
significantly higher in accuracy and comparable in the others.
This suggests that for whole side image data a network with
random weights can better capture similarity and thus classi-
fication.

Index Terms— histopathology, whole slide images, ran-
dom depthwise convolutional network

1. INTRODUCTION

The classification of histopathology images play a key role in
diagnosing and understanding cancer. Pathologists typically
have to browse numerous images to determine the tumor type
which requires considerable training, is time intensive, and
is prone to manual errors. The automated classification of
tumor type can greatly speed up physician diagnosis and lead
to better care and treatment. Convolutional neural networks
that attain the state of the art in image recognition [1] have
previously been proposed for this problem [2, 3, 4].

Here we investigate a depthwise convolutional neural net-
work with random weights (RDCNN) [5]. Previously this
has been shown to classify images with similar background,
color, and texture accurately as evaluated on existing bench-
marks [6]. We conjecture this may be useful in the problem
of histopathology images where image similarity may play a
role in classification. To test this hypothesis we performed
an experimental performance study comparing the accuracy

of trained convolutional networks to RDCNN. Below we de-
scribe our datasets and methods followed by our results.

2. METHODS

2.1. Datasets

We obtain four publicly available datasets spanning thee dif-
ferent cancers.

2.1.1. IDC - breast cancer

The Invasive Ductal Carcinoma (IDC) dataset is provided
by ICPR 2012 contest [7]. The original dataset consisted of
162 whole mount slide images of Breast Cancer histology
specimens scanned at 40x. From that patches of size 50× 50
were extracted of which 198,738 were IDC negative and
78,786 IDC positive. We used the same train and test split by
Janowczyk et. al. [8].

2.1.2. ISIC - skin cancer

This dataset is provided by the ISIC 2019 Challenge [9, 10].
This is for classifying skin cancer images among nine differ-
ent diagnostic categories: Actinic Keratosis, Squamous Cell
Carcinoma, Basal Cell Carcinoma, Seborrheic Keratosis, So-
lar Lentigo, Dermatofibroma, Nevi, Melanoma, and Vascular
Lesions. This dataset includes a total of 25331 images each
of size 600 × 400. We split them into train and test with a
ratio of 80:20.

2.1.3. Gleason - prostate cancer

Gleason 2019 dataset contains prostate cancer from H&E-
stained histopathology images, which is provided by Glea-
son 2019 challenge (https://bmiai.ubc.ca/ research/miccai
-automatic-prostate-gleason-grading -challenge-2019). This
challenge is part of MICCAI 2019 Conference, and will be
one of the three challenges under the MICCAI 2019 Grand
Challenge for Pathology. Data used in this challenge consists
of 267 tissue micro-array (TMA) images, the size of each
image is 5120 × 5120. Each TMA image is annotated in
detail by several expert pathologists. We select Map1 (the



first expert pathologist labels) as true labels, and split these
images into train and test with a ratio of 80:20.

2.1.4. BreakHis - breast cancer

The microscopic biopsy images in the BreakHis dataset were
collected from 82 patients using different magnifying factors
(40X, 100X, 200X, and 400X). The images are provided in
their raw PNG (Portable Network Graphic) format, without
normalization or color standardization and are all the same
size (700× 460 pixels, 3-channel RGB, 8-bit depth per chan-
nel). The samples were collected by Surgical Open Biopsy
method, also called partial mastectomy or excisional biopsy
[11]. This type of procedure removes a large tissue sample
and is done in a hospital with general anesthesia.

The benign and malignant image groups are further di-
vided into sub-groups describing the specific kind of anomaly.
For benign lesions, the anomalies present are fibroadenoma,
Phyllodes tumor and tubular adenoma. For the malignant le-
sions, the anomalies present are ductal carcinoma, lobular car-
cinoma, mucinous carcinoma and papillary carcinoma.

We only consider images at the 400X magnification level,
where we count a total of 1,606 samples (1285 for training,
321 for testing). Out of that total, 374 samples are benign and
1,232 are malignant. By using augmentation (adding more
samples by rotating and flipping the original images), we will
have 8120 samples (6496 for training, 1624 for testing).

2.2. Convolutional neural networks

Convolutional neural networks are typically composed of al-
ternating convolution and pooling layers followed by a final
flattened layer. A convolution layer is specified by a kernel
size and the number of kernels in the layer. Briefly, the convo-
lution layer performs a a moving non-linearized dot product
against pixels given by a fixed kernel size k×k (usually 3×3
or 5 × 5). The dot product is usually non-linearized with the
sigmoid or hinge (relu) function since both are differentiable
and fit into the gradient descent framework. The output of ap-
plying a k × k convolution against a p× p image is an image
of size (p− k + 1)× (p− k + 1).

2.3. Random depthwise convolutional neural networks
(RDCNN)

Consider applying random convolutional blocks repeatedly
and then averaging all the values in the final representation of
the image. If we repeat this k times it gives us k new features.
This can be described as a random depthwise convolutional
neural network (RDCNN) [5]. Each convolutional block in
our network is a convolutional kernel followed by 2× 2 aver-
age pooling with stride 2.

Our network is parameterized by the number of convolu-
tional blocks b, the size of each kernel k × k and the number
of kernels m in each layer (this is the same in each layer). In
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Fig. 1. A random depthwise convolutional neural network
with two convolutional blocks, kernel size of k, and m = 5
kernels in each layer

Figure 1 we show an example of our network with two lay-
ers (l = 2) and five 3 × 3 convolution blocks in each layer
(m = 5, k = 3). We set the values in each convolutional ker-
nel randomly from the Normal distribution with mean 0 and
variance 1.

We non-linearize the output of each convolution with the
sign function and our convolution is depthwise. This means
the ith convolution is applied on the ith kernel only of the
previous layer. In the input layer, however, the convolution
is applied in the conventional way to account for RGB im-
ages that have three layers. After we are done with convolu-
tions we globally average pool the final layer which gives us
a flattened feature space. We then apply a linear support vec-
tor machine or stochastic gradient descent on the final feature
space.

2.4. Deep networks compared in our study

We compare our method to modern networks used in image
recognition today. These are convolutional neural networks
designed to enable deeper architectures and are trained with
stochastic gradient descent.

• ResNet50 [12]: Residual convolutional networks con-
tain connections from previous layers and not just the
last one.

• VGG16 [13]: Deep convolutional neural network with
layers of convolution and pooling.

3. RESULTS

In Table 1 we see the train and test accuracies of VGG16,
ResNet50, and RDCNN on our four datasets. On ISIC and
Gleason we see that RDCNN achieves a much higher ac-
curacy and comparable on the remaining datasets. Overall
across all the datasets RDCNN has the highest accuracy of
95% whereas VGG16 and ResNet50 have 79% and 89.8%
respectively.

4. DISCUSSION AND CONCLUSION

Our preliminary results suggest that the unsupervised RD-
CNN can be highly useful in the classification of histopathol-



IDC
Method Train Test
VGG16 92.2 83.3

ResNet50 100 88.2
RDCNN (30K features, k=3, 4 layers) 87.8 87.6
RDCNN (50K features, k=5, 4 layers) 86.3 87.6

ISIC
Method Train Test
VGG16 89.8 85.9

ResNet50 90.3 87.5
RDCNN (65K features, k=3, 4 layers) 100 100
RDCNN (65K features, k=5, 4 layers) 100 100

Gleason
Method Train Test
VGG16 83.3 73.4

ResNet50 87.5 75
RDCNN (68K features, k=3, 4 layers) 100 93.5
RDCNN (70K features, k=5, 2 layers) 100 93.5

BreakHis 2 class
Method Train Test
VGG16 82.8 81.8

ResNet50 100 99.8
RDCNN (10K features, k=3, 7 layers) 100 98.8

BreakHis 7 class
Method Train Test
VGG16 99.14 70.61

ResNet50 94.1 98.6
RDCNN (10K features, k=3, 7 layers) 99.5 95.4

Table 1. Train and test accuracies (shown as percentages)
of fully trained VGG16 and ResNet50 and the unsupervised
RDCNN on our datasets.

ogy images. We see that a kernel size of 3 and a total of 4
layers works well in most cases. We plan to follow up with a
detailed look at images where RDCNN performs better than
the trained models.
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