Accurate and adversarially robust classification of
medical images and ECG time-series with
gradient-free trained sign activation neural networks
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Abstract—Adversarial attacks in medical Al imaging systems
can lead to misdiagnosis and insurance fraud as recently high-
lighted by Finlayson et. al. in Science 2019. They can also be
carried out on widely used ECG time-series data as shown in Han
et. al. in Nature Medicine 2020. At the heart of adversarial attacks
are imperceptible distortions that are visually and statistically
undetectable but cause the machine learning model to misclassify
data. Recent empirical studies have shown that a gradient-free
trained sign activation neural network ensemble model requires
a larger distortion than state of the art models. We apply
them on medical data in this study as a potential solution
to detect and deter adversarial attacks. We show on chest
X-ray and histopathology images, and on two ECG datasets
that this model requires a greater distortion to be fooled than
full-precision, binary, and convolutional neural networks, and
random forests. We show that adversaries targeting the gradient-
free sign networks are visually distinguishable from the original
data and thus likely to be detected by human inspection. Since
the sign network distortions are higher we expect an automated
method could be developed to detect and deter attacks in advance.
Our work here is a significant step towards safe and secure
medical machine learning.

Index Terms—histopathology, X-ray, ECG, adversarial attack,
robust classification, gradient-free trained sign activation neural
networks

I. INTRODUCTION

While machine learning holds great promise for accurate
and automated medical diagnosis it can be fooled with imper-
ceptible distortions known as adversarial attacks [1]-[6]]. As
a result attackers can trick models into misdiagnosis which
can lead to insurance fraud, or fool models into producing
incorrect results in large-scale clinical studies and tilt the
conclusion in their favor. One way to defend against such
attacks is to use models that require a high distortion to make
the input adversarial. In this scenario it is more likely to detect
and stop such an attack in advance.
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Gradient-free trained sign activation networks have recently
shown great promise in defending against adversarial attacks
[7]-[10]. These networks are trained with a stochastic coordi-
nate descent algorithm [8]. Their minimum distortion to make
the input adversarial (also called the adversarial distortion)
has been empirically estimated to be higher than other state
of the art models [9]. This means an image has to undergo
considerable modification (that may be detectable in advance)
before it can fool a model.

In this paper we study the adversarial distortion of gradient-
free trained sign networks and other state of the art models
when attacking chest X-ray and histopathology image, and
ECG time-series data. We find that the gradient free trained
sign networks have a higher estimated distortion than all other
models on both image and ECG time-series data. We also show
that adversaries targeting the gradient free sign networks are
visually distinguishable from the original data thus making
them detectable in advance. Our work is a first step towards
secure and robust medical machine learning systems.

II. METHODS
A. Gradient-free trained sign activation neural networks

Sign activation networks can be trained with a recently
proposed gradient-free stochastic coordinate descent algorithm
[8]-[10]. In order to understand this training algorithm for a
single hidden layer network we first show it for a simple linear
classifier. Suppose we are given binary class data z; € R?
and y; € {—1,+1} for ¢ = 0...n — 1. We wish to determine
a linear classifier w € R% wy € R that minimizes the
empirical risk for a given loss function ), L(w, wo, Z;, ¥;)-
At the high level our approach is simple: start with a random
solution w; € N(0,1),wo € N(0,1) for ¢ = 0..d — 1 and
iteratively make incremental changes that improve the risk. In



each iteration we select a random set of features (coordinates)
from w called F'. For each feature w; € F' we add/subtract a
learning rate n and then determine the wyq that ogtlmlzes the
risk. We consider all possible values of wy = M
for ¢ = 0...n — 2 and select the one that minimizes the loss.
To avoid local minima in our search we consider a random
sample of the training data in each iteration. We set this to
75% of the training data in image and text data experiments
and 25% in the ECG data.

We call the above search stochastic coordinate descent
abbreviated by SCD. In order to train a single hidden layer
network we apply SCD to the final node and then a randomly
selected hidden node in each iteration of the algorithm. We can
train sign activation networks with and without binary weights
using our SCD training procedure above. In the case of binary
weights we don’t need a learning rate. We apply parallelism
and several heuristics in practice to speed up the real runtimes.

B. Data

We obtained a multiclass dataset of histopathology images
of colorectal cancer from https://zenodo.org/record/53169#
.X5TZOJNIJFET7 [11] and a binary dataset of chest X-ray im-
ages (pneumonia vs normal) from Kaggle https://www.kaggle.
com/paultimothymooney/chest-xray-pneumonia. The chest X-
ray images were resized to 96 x 96 and downsampled to have
1,584 images per class. The colorectal images are tissue tiles
of dimensions 150 x 150 that we also resize to 96 x 96. The
colorectal cancer dataset has 8 classes each containing 625
images from which we extract two classes which give the
highest test accuracy (these are the Mucosa and Adipose tissue
images from class 6 and 7 respectively). We then randomly
divide each of the two datasets into an 80:20 train test split.

We also obtained two ECG time-series datasets from Kag-
gle https://www.kaggle.com/shayanfazeli/heartbeat. The first
one is the PTB Diagnostic ECG dataset [12], [13|] and the
second is the MIT-BIH Arrhythmia dataset [14]. The PTB
Diagnostic (PTBD) dataset is two classes of normal and
abnormal heartbeat readings. The MIT dataset contains five
classes of different heartbeat rhythms with a total of 87554
points in the train and 21892 in the test. Both datasets have
187 heartbeat readings (features) per datapoint. We divide the
PTBDB dataset randomly into a single 80:20 train test split
(yielding 13096 train and 1456 test points) and the MIT-BIH
dataset comes with separate train and test datasets.

C. Methods compared

We train two types of sign activation networks with our
algorithm: (1) SCDO1: Ol-loss in the final node, and (2)
SCDCE: cross-entropy loss in the final node. Since sign
activation is non-convex and our training starts from a different
random initialization we run it a 100 times and output the
majority vote.

We include in our methods the full-precision sigmoid activa-
tion counterpart denoted as MLP, two convolutional neural net-
works LeNet [15] and ResNet18 [16], binary neural networks
[17] (implemented in the Larq library [[18]]), and random forest

[19]. For each model we train it a 100 times starting from
different random initialization except for ResNet18 which we
train 10 times. We then output the majority vote of each model.

For the ECG time series data we use an ensemble of 10
convolutional neural networks (CNN) with 1D convolutional
kernels. Each of our CNNs has the following structure: 64
1x16 Conv1D kernels — MaxPool 1x4 — 128 1x16 ConvlD
kernels — MaxPool 1x4 — 256 1x16 ConvlD kernels —
MaxPool 1x2 — FullyConnected — Output.

The code for sign activation networks is freely avail-
able from from |https://github.com/zero-one-loss/scd_githubl
We implemented all models in Python, numpy, and Pytorch
[20].

ITI. RESULTS
A. Chest X-ray and colorectal cancer histopathology images

We first evaluate the clean test accuracy of all our models. In
Table |Il we show the accuracies of all models on the validation
data. We see that the convolutional networks ResNet18 and
LeNet lead in the chest X-ray dataset but the other methods
are not too far behind.

TABLE 1
AVERAGE ACCURACY OF VALIDATION DATA IN CHEST X-RAY AND
HISTOPATHOLOGY IMAGES

Chest X-ray  Histopathology
SCDO1 90.7% 99.6%
SCDCE 91.3% 99.6%
MLP 88.7% 100%
LeNet 92.6% 99.6%
ResNet18 94.3% 99.6%
Random forest 84.7% 100%

We then run the HopSkipJump boundary based black box
attack [21]] to determine the adversarial distortion of five ran-
domly selected images from the chest X-ray and five from the
colorectal cancer histopathology validation datasets. This is an
estimate of the minimum distortion required to make an image
adversarial: the larger the value the more robust the model is
since a large distortion is also likely to be detected in advance.
Finding the exact minimum distortion is in fact an NP-hard
problem as shown for ReLu activated neural networks [22],
[23] and tree ensemble classifiers [24]]. Even approximating
the minimum distortion for ReLu activated neural networks
is NP-hard [_25]. In previous work the distortions reported by
HopSkipJump have been shown to be lower (tighter and more
accurate) than other boundary attack methods [9], [21].

We use the HopSkipJump implementation in the IBM
Adversarial Robustness Toolkit (ART) [26]]. In order to obtain
as accurate an estimate of the adversarial distortion as possible
we run HopSkipJump 10 times each with the same fixed initial
image (that is misclassified by all models) and maximum
iterations of 100 and report the minimum value. We use a
fixed image because otherwise random initial points are not
misclassified by some of our models. For a single datapoint
this typically takes several hours to finish and thus we are able
to report the distortion of only five random images per dataset.
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In Table [ we see the adversarial distortions of five random
test images each from the chest X-ray and histopathology
datasets and their averages. The gradient free trained sign
network SCDCE has the highest distortion on each of the
two datasets. In the chest X-ray dataset we see that MLP is
the second best after SCDCE and in the colorectal dataset
ResNet18 follows the SCD models. When we average across
the two datasets the distortions of the SCD models are even
higher with SCDCE taking the lead and twice better than MLP,
LeNet, and ResNet18.

TABLE II
MINIMUM ESTIMATED L2 ADVERSARIAL DISTORTION OF 5 RANDOM
IMAGES EACH FROM CHEST X-RAY AND COLORECTAL CANCER
VALIDATION DATASETS AS GIVEN BY HOPSKIPJUMP WHEN ATTACKING
THE DIFFERENT MODELS.

Chest X-ray
SCDO0l SCDCE MLP LeNet Resl8 RF
Image 0 15.3 18.4 14.8 1 43 18.5
Image 1 12.1 16.4 15.1 0.5 2.9 11.3
Image 2 12.8 17.6 14.5 42 0.6 9.2
Image 3 10 7.7 10.7 0.3 0.1 12
Image 4 11.3 14 12.9 4.1 0.4 2.4
Average 12.3 14.8 13.6 32 0.5 10.7
Colorectal histopathology
SCD01 SCDCE MLP LeNet Resl8 RF
Image 0 28.3 41 9.9 29 31.6 19.9
Image 1 4.4 6.3 2.8 7 6.2 39
Image 2 35.8 36.1 9.9 36.8 39.8 30.4
Image 3 30 38.6 12 24.1 19.1 28.7
Image 4 17.2 26.5 7.7 17.1 19 134
Average 24.1 29.7 8.5 22.8 23.1 19.2
Combined 17.7 22.3 11 13 11.8 15
Average

To get a visual feel for the distortions we plot the original
and adversarial images of Image 3 (shown above in Table
from the colorectal dataset. In Figure [I] we see that all
adversarial images have a high distortion with SCDCE having
the highest. As a result the SCDCE adversary also looks
the dottiest compared to others and can easily be spotted as
abnormal and potentially adversarial.

B. ECG time series

As we did for the images above, we firsts compare the clean
test accuracies of all methods in Table [[lll As above the CNN
leads in accuracy but the gradient-free sign networks, MLP,
and random forest are not far behind.

TABLE III
AVERAGE ACCURACY OF VALIDATION DATA IN PTBD AND MIT-BIH
ECG DATASETS

PTBD  MIH-BIH
SCDO1 91.1% 96.4%
SCDCE 93.3% 96.6%
BNN 80.4% 86.3%
MLP 96.1% 97.1%
CNN 99.6% 99.9%
Random forest  97.6% 97.5%

We picked 37 random datapoints from the PTBD test dataset

and 21 from the MIT-BIH test dataset and attacked all models

(f) RF adversary (29)
Fig. 1. Original and adversarial images produced by HopSkipJump attack.

Also shown is their minimum estimated Lo distance to the original image
(adversarial distortion).

on these points with HopSkipJump. We attack each point 10
times each time starting from an initial pool size of 1000
random points and 100 iterations, and report the minimum.
As we saw above in the case of images, the gradient free
sign network model has the highest distortion on both datasets
individually and in the combined average. In the MIT-BIH
dataset SCDCE leads in distortion by almost twice the value
of the next best BNN.

TABLE IV
AVERAGE MINIMUM ESTIMATED Lo ADVERSARIAL DISTORTION OF 37
AND 21 RANDOM TEST POINTS FROM PTBD AND MIT-BIH DATASETS
RESPECTIVELY AS GIVEN BY HOPSKIPJUMP.

PTBD MIH-BIH Combined average

SCDO1 18 .35 27
SCDCE .1 .39 25
BNN .14 24 .19
MLP .08 15 12
CNN .1 22 .16
Random forest .14 27 21

In Figure [2| we see the ECG readings of a single random
test datapoint. The larger distortion of SCDO1 and SCDCE
clearly shows more spikes than the original and can spotted
as abnormal and adversarial. In comparison the other models



look similar to the original. We can see that RF’s distortion
comes mainly from one unusual spike in the beginning but the
rest is smooth and similar to the original.

IV. CONCLUSION

We present for the first time a model that is robust to
adversarial attacks in chest X-ray and histopathology images,
and also in ECG time series data. We show that the gradient
free trained sign networks require a greater distortion in order
to fool the model and thus are likely to be detected in advance.
While more research is required to show distortion on a larger
cohort and to create methods that can detect high distortion
attacks in advance, our work here is a significant step towards
robust medical machine learning models.
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Fig. 2. Original and adversarial images produced by HopSkipJump attack.
Also shown is their minimum estimate Lo distance to the original image
(adversarial distortion).
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