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Abstract—The 01 loss while hard to optimize is least sensitive to
outliers compared to its continuous differentiable counterparts,
namely hinge and logistic loss. Recently the 01 loss has been
shown to be most robust compared to surrogate losses against
corrupted labels which can be interpreted as adversarial attacks.
Here we propose a stochastic coordinate descent heuristic for
linear 01 loss classification. We implement and study our heuristic
on real datasets from the UCI machine learning archive and find
our method to be comparable to the support vector machine in
accuracy and tractable in training time. We conjecture that the
01 loss may be harder to attack in a black box setting due to its
non-continuity and infinite solution space. We train our linear
classifier in a one-vs-one multi-class strategy on CIFAR10 and
STL10 image benchmark datasets. In both cases we find our
classifier to have the same accuracy as the linear support vector
machine but more resilient to black box attacks. On CIFAR10 the
linear support vector machine has 0% on adversarial examples
while the 01 loss classifier hovers about 10%. On STL10 the
linear support vector machine has 0% accuracy whereas 01 loss
is at 10%. Our work here suggests that 01 loss may be more
resilient to adversarial attacks than the hinge loss and further
work is required.

Index Terms—Stochastic coordinate descent, 01 loss, adversar-
ial attacks

I. INTRODUCTION

The problem of determining the hyperplane with minimum
number of misclassifications in a binary classification problem
is known to be NP-hard [1]. In mainstream machine learning
literature this is called minimizing the 01 loss [2] as given in
Objective 1,

1

2n
argmin

w,w0

∑
i

(1− sign(yi(wTxi + w0))) (1)

where w ∈ Rd, w0 ∈ R is our hyperplane solution, and
xi ∈ Rd, yi ∈ {+1,−1}.∀i = 0...n − 1 are our training
data. Popular linear classifiers such as the linear support
vector machine, perceptron, and logistic regression [3] can
be considered as convex approximations to this problem that
yield fast gradient descent solutions [4]. However, they are
also more sensitive to outliers than the 01 loss [5].

In Figure 1 we demonstrate the effect of a single outlier on
the hinge, logistic loss, their regularized versions, and 01 loss.
In both cases we intuitively desire a vertical hyperplane that
divides (1,1), (1,2), and (1,3) from (3,1), (3,2), and (3,3) since

this would likely minimize test error. When the outlier is of
the same class as in Figure 1(a) all five objectives give similar
vertical hyperplanes. The 0/1 loss alone has infinite solutions
though and we show a single one here.

When we switch the label of the outlier in Figure 1(b) both
the hinge and logistic along with their regularized counterparts
give skewed hyperplanes that make several misclassifications
on the training data. This is due to the fact that misclassified
points increase the hinge and logistic objective (the farther
misclassified the point the more the effect) and so in order to
lower the objective the hyperplane is skewed towards it. The
0/1 loss however is not affected by distances of outliers and
still gives a desired hyperplane.

Recently the 01 loss has been shown to be more robust
than surrogate loss functions against label corruption [6]. In
the standard machine learning model both train and test data
follow the same distribution [7]. When the test distribution is
different we can interpret this as an adversarial attack where
an adversary is giving test data from a different distribution.
In this scenario (also called distributionally robust supervised
learning [8]) we want to minimize the adversarial empirical
risk. It turns out that 01 loss has a monotonic relationship
between the empirical risk and adversarial empirical risk:
minimizing the empirical risk under 01 loss is the same as
minimizing the adversarial empirical risk [8]. This gives the
01 loss additional robustness besides outliers.

We present here a stochastic coordinate descent (SCD)
heuristic for 01 loss based on the original stochastic gradient
descent method [9]. While the gradient gives the direction of
best descent here we perform a heuristic coordinate descent for
each stochastic batch. We evaluate our method by comparing
it against the a cross-validated linear support vector machine
(SVM) on real datasets from the UCI machine learning archive
[10]. We find that the cross-validated linear SVM performs
slightly better in average and median error but not by a
statistically significant margin.

We explore the SCD’s sensitivity to a black-box adversarial
attack [11], [12], a method that treats the classifier to be
attacked as a black box whose model and parameters are
unknown. We implement a simple single layer neural network
that we use to estimate the black box’s gradient and to produce
adversarial examples targeting the black box. We perform two



(a)

(b)
Fig. 1. In (a) we see that an outlier of the same class is not a problem for
hinge, logistic, and 0/1 loss objective. However, when we switch its label
it affects hinge and logistic considerably while the 0/1 loss decision surface
remains the same (although there are an infinite number of solutions we show
just one here).

separate tests on both SCD 01 loss and the linear SVM on each
CIFAR10 and STL10 image object detection benchmarks. On
CIFAR1 we find that the linear SVM quickly approaches a 0%
accuracy after a few epochs of the black box attack whereas
the SCD 01 loss fluctuates and stays above 5%. We see the
same on STL10 except there 01 loss stays above 10% accuracy.

While greater exploration is needed, such as a larger neural
network as the gradient approximator and experiments on more
image benchmarks, we see that the 01 loss has some potential
for defending against adversarial attacks. This may be due to
its discrete search space and (infinite) non-unique solutions.

II. METHODS

A. Coordinate descent

We describe in Algorithm 2 our local search based on
coordinate descent. In brief, we start with a random w, make
changes to it one coordinate at a time, determine the optimal
w0 for each setting of w with Algorithm 1, and stop when we
reach a local minimum. There are several aspects of our local
search worth discussing here.

First, we cycle the coordinates randomly. Since we modify
only a single coordinate of w at a time we can update the

projection wTxi for all i = 0..n − 1 in O(n) time —
this update is required to determine the optimal w0 and the
objective value. We perform at most 10 modifications to a
given coordinate (as given by the loop ‘forj = 1 to 10 do’)
before considering the next one. This gives all coordinates a
fair chance before we reach a local minimum. In the same
loop we also update the objective if a better one is found
and exit if modifying the coordinate does not improve the
objective further. An alternative is to update the objective only
after cycling through all the coordinates. However, we find
our approach yields a faster search than the alternative while
giving similar objective values.

Another aspect of our search is the determination of the
optimal w0 in Algorithm 1. For each setting of wi (the ith

coordinate of w) we determine the optimal value of w0 by
considering all O(n) settings of w0 between sorted successive
projected points wTxk and wTxk+1 (see Algorithm 1). Since
we modify w locally the new projection is similar to the
previous (sorted) one and hence insertion sort (that we use
for sorting the projection) takes much less than the worst case
O(n2) time.

For an initial w it takes O(n) to determine the optimal w0.
After that as we change w the new w0 is less likely to be
much different than the previous one. And so we don’t need
to consider all O(n) points again to determine the optimal w0.
Instead, if the initial w0 was found right after the projected
point i then we only consider the range of points starting from
i − 10 to i + 10 in the new projection to determine the new
w0. For a visual illustration see our toy search problem shown
in Figure 2.

Algorithm 1 Opt
Input: wTxi ∈ Rd for i = 0..n − 1 with labels yi ∈
{+1,−1}, start, end
Output: Optimal w0 ∈ R with minimum 01 loss and the
(balanced) 01 loss value obj
Procedure:

for i = start to end− 1 do
w′0 =

wTxi + wTxi+1

2
if yi(wTxi + w′0) == 0 then

If yi == 1 then errorplus++
else if yi(wTxi + w′0) > 0 then

If yi == 1 then errorplus−− else errorminus−−
else if yi(wTxi + w′0) < 0 then

If yi == 1 then errorplus++ else errorminus++
end if
If obj′ = −1(errorplus

n+
+
errorminus

n−
)/2 (a balanced

version of our 01 loss objective 1) is lower than current
best objective obj then obj = obj′ and w0 = w′0.

end for
return (w0, obj)

The winc parameter corresponds to the learning rate η in
gradient descent optimizers. We implement a simple adap-



Algorithm 2 Coordinate descent
Input: Training data xi ∈ Rd for i = 0..n − 1 with labels
yi ∈ {+1,−1}, winc ∈ R (set to 100 by default), vector
w ∈ Rd and w0 ∈ R
Output: Vector w ∈ Rd and w0 ∈ R
Procedure:

1. Initialization: If w and w0 are null then let each feature
wi of w be randomly drawn from [−1, 1]. Set ‖w‖= 1.
Throughout our search we ensure that ‖w‖= 1 by renor-
malizing each time w changes.
2. Initialize the number of misclassified points with negative
wTxi be errorminus = 0 and with positive wTxi be
errorplus = 0. These are later used in Algorithm 1 for
fast update of our objective.
3. Compute the initial data projection wTxi,∀i = 0..n −
1, sort the projection with insertion sort, and initialize
(w0, obj) = Opt(wTx, y, 0, n− 1).
4. Set prevobj =∞.
while prevobj − obj > .01 do

Consider a random permutation of the d feature indices.
for i = 0 to d− 1 do

Let sign = 1 if adding winc to wi lowers the objective
and -1 otherwise
for j = 1 to 10 do

1. Set prevobj = obj
2. Assume w0 = (wTxj +wTxj+1)/2 for some j.
3. Set start = wTxj−10 and end = wTxj+10

4. Set wi += sign × winc and compute data pro-
jection wTxi,∀i = 0..n− 1, and sort the projection
with insertion sort
5. Set (w0, obj) = Opt(wTx, y, start, end)
6. Accept the new modified value of wi if it lowers
the objective and update the 01 loss obj, otherwise
we exit this loop

end for
end for

end while

tive procedure that considers values of winc from the set
{±102,±104,±106} and picks the one with the greatest
decrease in our objective (see Objective 1).

To understand why we have such large learning rates
consider the toy example shown below in Figure 3. With
small and constant step sizes we would be perpetually stuck
in difficult local minima since 01 loss is non-unique and can
have infinite solutions.

B. Stochastic coordinate descent

There is no guarantee our local search algorithm will return
the global solution. The global solution may not even be
unique. Once we reach a local minima we may choose the
random restart approach and run the search again. An alterna-
tive is to rely on random batches of the training data across
many iterations of the coordinate descent above so as to better
explore the search space. We call this stochastic coordinate

(a)

(b)
Fig. 2. Illustration of our coordinate search on a toy example. In (a) we show
a hyperplane with an initial random normalized w. The dotted lines show
where the projected points would lie on w. The optimal w0 that minimizes
our objectives lies just after the fourth projected point. In (b) we increase the
x-coordinate of w thus modifying the orientation of the plane (we renormalize
w after the orientation). In the new projection the optimal w0 is also after
the fourth projected point. Thus we don’t need to perform a full O(n) search
after modifying w but instead considering just a few projected points around
the previous w0 is sufficient as a heuristic.

w"
w0/||w||"

x"

Fig. 3. The hyperplane in solid line is given by w and w0 and it misclassifies
the point x. The dotted hyperplanes are given by a small step size in the
two coordinates of w and insufficient to cross over point x. The dashed
hyperplanes are given by a larger step size that is sufficient to cross over
x and give a potentially lower 0/1 loss.

descent since this is essentially stochastic gradient descent [9]
with the gradient descent replaced by our coordinate descent
above. We describe this in detail in Algorithm 3. For a single
run of our heuristic we save the best solution of w,w0 across
all random restarts and use that as the model parameters.



Algorithm 3 Stochastic coordinate descent
Input: Feature vectors xi ∈ Rd with labels yi ∈ {+1,−1},
number of random restarts rr ∈ N (Natural numbers), number
of iterations per random restart it ∈ N (Natural numbers),
batch size as a percent of training data p ∈ [1, 100] , and
winc ∈ R (set to 100 by default)
Output: Total of rr pairs of bestw ∈ Rd,bestw0 ∈ R after
each random restart
Procedure:

Set j = 0
while j < rr do

1. Set bestw = null, bestw0 = null, bestloss =∞
for i = 0 to it do

1. Randomly pick p percent of rows as input training
data to Algorithm 2 and run it to completion starting
with the values of w and w0 from the previous call to
it (if i == 0 we set w = null, w0 = null).
2. In the next step we calculate objectives on the full
input training set
if objective(w,w0) < objective(bestw, bestw0) then

Set bestw = w, bestw0 = w0, and bestloss =
objective(w,w0)

end if
end for
2. Output bestw and bestw0

3. Set j = j + 1.
end while
We output all (bestw, bestw0) pairs across the random
restarts. We can use the pair with the lowest objective or
the majority vote of all pairs for prediction.

C. Related work

Our coordinate descent and that of [13] differ in how the
coordinates are optimized. In their case the authors project
the data onto the current hyperplane (that is initially random),
scale each projected value by the inverse of its projection on
a random vector r, sort the projected values to determine the
value that optimizes the 01 loss (call it α), and update the
solution w by adding α×r. This is repeated for a fixed number
of iterations. In our case we focus on optimizing Objective 1:
we make an incremental change to a coordinate at a time,
project the data onto the hyperplane, determine the optimal
threshold w0 for our objective, and repeat until the objective
converges.

D. Experimental performance study on UCI datasets

In order to evaluate our stochastic coordinate descent (SCD)
algorithm we study it on the below datasets in an experimental
performance study. Our purpose here is to demonstrate that
our SCD 01 loss works on real data and is comparable to the
popular linear SVM in accuracy.

1) Datasets: We obtained 52 datasets from the UCI repos-
itory. The datasets include data from different sources such
as biological, medical, robotics, and business. Some of the

datasets are multi-class and since we are studying only binary
classification in this paper we convert them to binary. We label
the largest class to be -1 and remaining as +1 and ignore
instances with missing values across the datasets. We provide
our cleaned data with labels, splits, and a README file on
the website http://web.njit.edu/∼usman/scd01oss.

2) SCD 01 loss and SVM parameters: We compare our
SCD 01 loss with random restarts rr = 100, number of
iterations per random restart it = 100 and p = 75%. We
use the single best output (w,w0 )across all random restarts.
For cross-validating linear SVM we select values of C from
the set {100, 10, 1, .1, .01, .001, .0001, .00001, .000001}.

3) Train and test splits and measure of accuracy: For each
dataset we create 10 random partitions into training and test
datasets in the ratio of 90% to 10%. We use the number of
misclassifications divided by the number of test datapoints as
the measure of error throughout in our study.

E. Experimental performance study on image benchmarks
CIFAR10 and STL10

In order to evaluate the adversarial sensitivity of SCD 01
loss to adversarial attacks we expose it to a black box attack
method that we describe below in detail.

1) Black box adversarial attack: A black box adversar-
ial attack approximates the model by giving it inputs and
recording its outputs. It then uses the predictions as labels
to train itself and then use its gradient to produce adversarial
examples. We implement a double layer neural network with
200 hidden nodes in each layer and 10 nodes in the output one
as the adversarial attacker (B). We fully describe our attack
algorithm in Algorithm 4.

Algorithm 4 Shown here is a basic outline of the black box
attack method [12]
Input: Model M to be attacked, Adversarial attacker B,
Feature vectors xi ∈ Rd with labels yi ∈ {+1,−1}, number
of epochs ep ∈ N (Natural numbers)
Procedure:

Set data D = {xi, yi}
for i = 0 to ep do

1. Obtain predictions y′i of D from black box model M
2. Set adversarial training data A to be D except we
replace each yi with the predicted label y′i.
3. Train attacker B with A as input training data
4. With B’s gradient we produce adversarial examples.
5. For each sample ai in A create adversary ai = ai +
λ∇f where ∇f is the gradient of B and λ is randomly
chosen from [−.1, .1].
6. Add new adversarial samples {ai, yi} to D
7. This effectively doubles the number of adversarial
samples after each iteration. If we instead select a 100
random samples from A then we increase the adversarial
size by 100 as opposed to doubling.

end for

http://web.njit.edu/~usman/scd01oss


2) Datasets: We study adversarial attacks on two image
benchmarks:
• CIFAR10 [14]: Object recognition from 10 classes in

32×32 color images, training size of 50,000, test size of
10,000

• STL10 [15]: Object recognition from 10 classes in 96×96
color images, training size of 5000, and test size of 8000

3) Programs compared:
• Multi-class SCD 01 loss: We implement an one-vs-one

[3] multi-class classification method on top of our SCD
01 loss. In the SCD 01 loss we use the same parameters
as above.

• Multi-class linear SVM: We implement one-vs-all on top
of the linear SVM with C=1.

4) Train and test splits and measure of accuracy: For the
image benchmarks both train and test datasets are provided
in advance. We use the number of misclassifications divided
by the number of test datapoints as the measure of error
throughout in our study.

III. RESULTS

A. Classification on UCI datasets

In Table I we see the average and median error of SCD
01 loss and the cross-validated linear SVM. We see the linear
SVM is better in both mean and median but the difference
between them is not statistically significant. According to a
simple t-test the p-values between their errors across the 52
datasets is 0.53 which is far from significant.

TABLE I
MEAN AND MEDIAN ERROR OF SCD 01 LOSS AND LINEAR SVM

SCD 01 loss Linear SVM
Mean 13.5 13.2

Median 11.8 10.3

B. Black box adversarial attacks

1) CIFAR10: We generate adversarial samples on the CI-
FAR10 dataset and evaluate their accuracy on both the multi-
class SCD 01 loss and multi-class linear SVM. We evaluate the
SCD 01 loss with single and ten random restarts. For multiple
random restarts we take the majority vote as the final output.
Bootstrapping is a simple powerful method to boost model
accuracy [3], [16]. As a matching counterpart to our SCD
01 loss random restarts we run a bootstrapped version of the
linear SVM.

In Figure 4 we see the accuracy of CIFAR10 adversarial
samples in both SCD 01 loss and linear SVM as the number of
epochs progresses. We see both methods start losing accuracy
as the black box method progresses, but interestingly we find
SCD 01 loss to be relatively less sensitive. Both methods have
about 40% accuracy on CIFAR10 and after epoch 10 both
linear SVM and its bootstrapped version are at 0% accuracy.
The SCD 01 loss also loses accuracy but with ten random
restarts one demonstrates a greater defense.

Fig. 4. CIFAR10 black box attack described in Algorithm 4. We double the
number of adversarial samples per epoch.

In Figure 5 we see the adversarial attack with 100 new
adversaries per epoch. Here the SCD 01 loss with 10 random
restarts shows a greater resilience than the linear SVM.

Fig. 5. CIFAR10 black box attack: we generate a 100 new adversarial samples
per epoch.

2) STL10: We generate adversarial samples on the STL10
dataset and study their accuracy on SCD 01 loss and linear
SVM. In Figure 6 we see that the linear SVM reaches 0%
accuracy after the fifth epoch while SCD 01 loss remains above
10% at that epoch. However by epoch 15 SCD 01 loss is close
to 0% accuracy but with 10 random restarts it is still at 10%.

Since these images are larger all components of the black
box are slower and thus we have fewer epochs if we want to
double the adversarial sample size. Thus we study accuracy
on adversaries if we increase them by 100 after each epoch.
In this way we can run the attack for more epochs to see if
the accuracy becomes 0 for SCD 01 loss at some point.

In this setting we see that the ten random restarts SCD 01
loss remains well above 10% accuracy. Thus for STL10 we
need to double adversarial samples after each epoch if we want
to bring down the ten random restarts SCD 01 loss, but this
requires more time and computation.

If we increase the number of adversarial samples by only 50
after each epoch we see an even smaller effect on SCD 01 loss.
In fact in this setting even the linear SVM does not reach 0%



Fig. 6. STL10 black box attack: we double the number of adversarial samples
per epoch.

Fig. 7. STL10 black box attack: we generate a 100 new adversarial samples
per epoch.

and stays above 5% accuracy. The ten random restarts SCD
01 loss however is above 20% accuracy here.

Fig. 8. STL10 black box attack: we generate 50 new adversarial samples per
epoch.

IV. DISCUSSION

We conjecture that the 01 loss’s non-unique solution and
discrete search space may be making it difficult for our double
layer neural network to create a close approximation. This in

turn makes it difficult to create adversarial samples targeting it.
We also see that ten random restarts of SCD 01 loss makes it
less sensitive to attacks. This may be attributed to the increased
uncertainty in SCD 01 loss solutions arising from random
samples of the training data. To better understand further
experimental work is required such as using a more sophisti-
cated attacker, experiments on other image benchmarks, and
performance of SCD 01 loss with more random restarts. There
is however no guarantee that a complex model will perform
as a better attacker.

V. CONCLUSION

We present a stochastic coordinate descent heuristic that
performs comparably to a trained cross-validated linear sup-
port vector machine but demonstrates greater defense against
a black box adversarial attack on two image benchmarks. We
conjecture this may be due to 01 loss’s non-unique solutions
and discrete loss and further work is required.
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