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Abstract—The weighted maximum variance is a general
procedure for dimensionality reduction of which principal
component analysis and the maximum margin criterion
discriminant are special cases. In previous work we studied a
simple two parameter version of this that we call 2P-WMV.
There we show that with our extracted features we obtain a
lower average classification error given by 1-nearest neighbor
compared to other dimensionality reduction methods and the
raw features. Here we extend our method to work in a semi-
supervised setting. We present our method with experimental
results on several real datasets and show that it yields the lowest
error particularly when only 50% of the data is available for
training.
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I. INTRODUCTION

Semi-supervised learning has produced mixed results often
performing comparable to supervised learning [1]. Here we
extend our recent work on dimensionality reduction to the semi
supervised case. We consider the weighted maximum variance
[2] for semi-supervised learning using nearest neighbor graphs.

Suppose we are given the vectors xi ∈ Rd for i = 0...n−1
and a real matrix C ∈ Rn×n. Let X be the matrix containing
xi as its columns (ordered x0 through xn−1). Now consider
the optimization problem

argmax
w

1

2n

∑
i,j

Cij(w
T (xi − xj))2 (1)

where w ∈ Rd and Cij is the entry in C corresponding
to the ith row and jth column. We call this the weighted
maximum variance (WMV) and have previously shown it to be
a more general representation of principal component analysis
[3] and the maximum margin criterion [2], [4].

We briefly review our previous two parameter version of this
and then present the semi-supervised extension. We compare
the two versions on real data with 90% and 50% available
training data. On 90% and 50% we find the semi-supervised
to perform better than the supervised cases.

II. METHODS

We briefly review the two parameter weighted maximum
variance (2P-WMV) before extending it to the semi-supervised
case.

A. Two Parameter Weighted Maximum Variance Discriminant

In Equation 1 if we let Cij = Gij − 2Lij then we obtain
the following form of WMV.

argmax
w

1

2n
(
∑
i,j

Gij(w
T (xi−xj))2−

∑
i,j

2Lij(w
T (xi−xj))2)

(2)
Now define the matrix G ∈ Rn×n as Gij =

1
n for all i and

j and L ∈ Rn×n as

Lij =

 α if yi = yj
β if yi 6= yj
0 if yi or yj is undefined

This gives us the discriminant wT (St − 2(αS′w + βS′b))w
where

S′w = 1
n

∑c
k=1 nk

∑
cl(xj)=k(xj −mk)(xj −mk)

T

S′b =
1
2n

∑k
c=1

∑k
d=c+1

∑
cl(xi)=c,cl(xj)=d(xi − xj)(xi − xj)T

The discriminant yielded by 2P-WMV is given by the
standard total scatter matrix, a modified within-class matrix,
and a pairwise inter-class scatter matrix. We can obtain the
maximum margin criterion from this by setting α = 1

nk
if

yi = k, yj = k and β = 0. This discards the inter-class scatter
matrix and makes S′w = Sw.

B. Semi-Supervised Weighted Maximum Variance

1) k nearest neighbors: In the semi-supervised case we
define the matrix Lij as

Lij =


α if yi = yj
β if yi 6= yj
α if i is among the k nearest neighbors of j (or vice-versa)
0 otherwise

After defining L and G compute Lg the Laplacian of G,
Ll the Laplacian of L, and the matrix 1

nX(Lg − Ll)X
T (the

SSWMV discriminant). The solution to 2P-WMV is w that
maximizes 1

nw
TX(Lg − Ll)X

Tw which is in turn is given
by the largest eigenvector of 1

nX(Lg − Ll)X
T [5].



2) Majority among k nearest neighbors: Sometimes Semi-
Supervised data can be wrongly classified by simply relying
on k-nearest neighbors with the above definition for the matrix
Lij . In order to avoid those scenarios, we leveraged the labels
of labeled points and determined the class of unlabeled point
by finding the majority class among the k-nearest neighbor
labeled points.

Lij =


α if yi = yj
β if yi 6= yj
α if i and j belong to same class
β if i and j belong to different class

3) Clustering: In this case, we have used k-means cluster-
ing to determine the classes of unlabeled points. We define
the matrix Lij as

Lij =


α if yi = yj
β if yi 6= yj
α if i and j belong to same cluster
β if i and j belong to different clusters

4) Relative Clustering Validity Criterion: Relative clus-
tering validity criteria is used to quantitatively measure the
quality of data partitions formed using clustering. One im-
portant validation criterion is the silhouette width criterion
[8] . Silhouette width criterion coefficient is calculated using
the mean intra-cluster distance and the mean nearest cluster
distance for each sample.

S(i) =


1− a(i)

b(i) if a(i) < b(i)
0 if a(i) = b(i)

b(i)
a(i) − 1 if a(i) > b(i)

Where a(i) the measure of how dissimilar is i to its own
cluster and b(i) is the lowest average dissimilarity of i to any
other cluster. Thus an S(i) close to one means that the datum
is appropriately clustered and if S(i) is close to negative one,
then it is more appropriate if it was clustered in its neighboring
cluster. An S(i) near zero means that the datum is on the border
of two natural clusters.

III. RESULTS

To evaluate the classification ability of our extracted features
we use the simple and popular 1-nearest neighbor (1NN)
algorithm. In previous work we [2] found 2P-WMV extracted
features to have lower average error (with statistical signif-
icance) than other dimensionality reduction programs such
as the weighted maximum margin discriminant (WMMC),
PCA, and the features as they are. Here we consider training
validation splits of 90% and 50% to evaluate the effect of
training data size on our method and compare it to just 2P-
WMV. We apply the 1-nearest neighbor classification algo-
rithm to features extracted from our new semi-supervised
method SSWMV and the previous 2P-WMV [2]. We calculate
average error rates across 20 randomly selected datasets shown
in Table I from the UCI Machine Learning Repository [6].

TABLE I
DATASETS FROM THE UCI MACHINE LEARNING REPOSITORY THAT WE

USED IN OUR EMPIRICAL STUDY[6]

Code Dataset Classes Dimensions Instances

1 Liver Disorders 2 6 345
2 Wine 3 13 178
3 Heart 2 13 270
4 Australian Credit Approval 2 14 690
5 Climate 2 18 540
6 Diabetic Retinopathy 2 20 1150
7 Statlog German Credit Card 2 24 1000
8 Breast Cancer 2 30 569
9 Dermatology 6 34 366
10 Ionosphere 2 34 351
11 Qsar 2 41 1055
12 SPECTF Heart 2 44 267
13 Sonar 2 60 208
14 Ozone 2 72 1847
15 Hill Valley 2 100 606

A. Experimental Methodology

In both 2P-WMV and SSWMV we let β range from
{-2,-1.9,-1.8,-1.7,-1.6,-1.5,-1.4,-1.3,-1.2,-1.1,-1,-.9,-.8,-.7,-.6,-
.5,-.4,-.3,-.2,-.1,-.01} and α fixed to 1. For each parameter
we reduce dimensionality to 20 and then pick the top
1 <= k <= 20 features that give the lowest 1NN error on the
training. Thus the cross-validation on the training set gives
us the best values of α and the reduced number of features
which we then apply to the validation set.

We wrote our code in C and R and make it freely avail-
able at http://www.cs.njit.edu/usman/sswmv/. Our C programs
use CLAPACK libraries for performing the eigenvector and
singular value decompositions.

B. Experimental Results on 15 Datasets

We compute the misclassification rate
(numberofmisclassifications

numberoftest ) for each training-validation
split during cross-validation and take the mean to be the
average cross-validation error. In Table II we show the
average cross-validation error on each dataset. Across the 15
datasets 2P-WMV+1NN achieves the lowest average error of
18.45% and has the lowest error in 4 out of the 15 datasets.
1NN have average errors at 18.13%. 1NN have the lowest
error in 8 out of the 15 datasets respectively.

We measure the statistical significance with the Wilcoxon
rank test [7]. This is a standard test to measure the difference
between two methods across a number of datasets. Roughly
speaking it shows statistical significance between two methods
when one outperforms the other each time on a large number
of datasets. In Table II, the p-values show that 2P-WMV+1NN
statistically significantly outperforms the other three method
across all 15 datasets.

IV. DISCUSSION

Both 2PWMV+1NN and WMMC+1NN reduce dimension-
ality by determining optimal parameters specific to the given
dataset. This approach is better than the unsupervised PCA
and the non-parametric MMC (results not shown here). In



fact 1NN applied to the raw data can be better than non-
parameteric MMC most of the time.

In this study we fixed α for 2PWMV and varied only β.
If we cross-validated α we could potentially obtain lower
error but at the cost of increased running time. In the current
experiments 2PWMV+1NN and WMMC+1NN are the slowest
methods yet still tractable for large datasets.

We chose 1NN as the classification method for this study
due to its simplicity and its popularity with dimensionality
reduction programs. Other classifiers such as the support
vector machine [3] may perform better when replaced with
1NN. However, in that case the regularization parameter would
also need to be optimized via cross-validation which increases
the total runtime.

V. CONCLUSION

We introduce a two parameter variant of the weighted
maximum variance discriminant and optimize it with cross-
validation followed by 1-nearest neighbor for classification.
Compared to existing approaches our method obtains the
lowest average error with statistical significance across several
real datasets from the UCI machine learning repository.
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TABLE II
AVERAGE CROSS-VALIDATION ERROR OF DIFFERENT ALGORITHMS ON EACH OF THE 15 REAL DATASETS FROM THE UCI MACHINE LEARNING

REPOSITORY. SHOWN IN BOLD IS THE METHOD WITH THE LOWEST UNIQUE ERROR.

Dataset 2P-WMV+1NN SSWMV+1NN SSWMV + Majority 15NN SSWMV + clustering SSWMV + clustering
relative validity criteria

90% 50% 90% 50% 90% 50% 90% 50% 90% 50%

1 Liver Disorders 0.38 0.382 0.377 0.371 0.317 0.377 0.368 0.386 0.38 0.395
2 Wine 0.078 0.084 0.072 0.0752 0.272 0.498 0.267 0.309 0.267 0.309
3 Heart 0.244 0.236 0.241 0.227 0.263 0.288 0.267 0.237 0.270 0.244
4 Australian Credit Approval 0.189 0.201 0.189 0.201 0.207 0.212 0.187 0.214 0.187 0.214
5 Climate 0.067 0.094 0.067 0.094 0.065 0.082 0.085 0.087 0.061 0.088
6 Diabetic Retinopathy 0.318 0.373 0.319 0.374 0.396 0.388 0.395 0.389 0.406 0.387
7 Statlog German Credit Card 0.347 0.336 0.343 0.334 0.344 0.368 0.342 0.377 0.341 0.38
8 Breast Cancer 0.095 0.066 0.094 0.064 0.089 0.094 0.096 0.092 0.095 0.092
9 Dermatology 0.044 0.067 0.045 0.067 0.092 0.527 0.092 0.157 0.092 0.157
10 Ionosphere 0.092 0.123 0.086 0.112 0.117 0.129 0.119 0.131 0.105 0.135
11 Qsar 0.22 0.222 0.212 0.231 0.206 0.251 0.215 0.246 0.211 0.244
12 SPECTF Heart 0.237 0.238 0.241 0.245 0.255 0.278 0.204 0.249 0.222 0.277
13 Sonar 0.219 0.244 0.219 0.235 0.195 0.267 0.2 0.228 0.214 0.222
14 Ozone 0.112 0.117 0.113 0.122 0.114 0.132 0.119 0.115 0.114 0.12
15 Hill Valley 0.042 0.069 0.034 0.035 0.035 0.296 0.302 0.367 0.300 0.364

Average Error 0.178933 0.190133 0.1768 0.18581 0.1978 0.27913 0.2172 0.23893 0.2176 0.24186


