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Abstract

This work presents a numerical investigation of the dynamics of free-boundary flows of vis-

coelastic liquid membranes. The governing equation describes the balance of linear momentum, in

which the stresses include the viscoelastic response to deformations of Maxwell type. A penalty

method is utilized to enforce near incompressibility of the viscoelastic media, in which the penalty

constant is proportional to the viscosity of the fluid. A finite element method is used, in which

the slender geometry representing the liquid membrane, is discretized by linear three-node trian-

gular elements under plane stress conditions. Two applications of interest are considered for the

numerical framework provided: shear flow, and extensional flow in drawing processes.

Keywords: Viscoelastic fluids; Membranes; Finite Elements

1. Introduction

Thin viscoelastic films can be found in a large variety of settings, from typical life situations to

sophisticated manufacturing processes. In our everyday life, we may encounter sheets or thin layers

of liquids that show a viscoelastic behavior, such as custard, shampoo, shaving cream, wax, glue, and

paint; or similarly, soft solids with the same characteristics, such as gels. For biomedical engineering

applications, thin viscoelastic sheets can represent biopolymers [1], or biological tissues constituting

blood cells [2, 3]. In some manufacturing processes, thin layers of elastic or viscoelastic materials,

for instance, in the form of liquid crystal polymers, are largely employed [4]. Hence, the prediction

of the behavior of viscoelastic sheets through mathematical and numerical modeling becomes a cost-

effective manufacturing practice, as well as an important tool to better understand some physical

effects, that are difficult or too expensive to reproduce experimentally. The mathematical and

numerical framework developed in this work aims at providing insight to the understanding of the

dynamics and physical behavior of thin layers of viscoelastic media, modeled as membranes.
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Thin curved bodies are commonly modeled as shells or membranes [5, 6]. The slender geometry

of thin films or sheets of various materials can be described through an idealized mid-surface, that

sits at half thickness between the top and bottom surfaces of the sheet. For the general theory of

shells, the mid-surface has a non zero curvature, and any application of loading or external forces

causes both bending and stretching [7, 8]. A particular case of this general theory is the membrane

theory of shells, that concerns the study of the in-plane stretching deformations, dominant with

respect to transversal deflections, and in which bending stiffness is neglected. In this work, we

utilize the membrane theory of shells, in which the in-plane stresses are included to model the

viscoelastic response to deformations. The majority of the studies in the literature of membrane

theory of shells, focuses on the statics of load-carrying elastic shells that hold an equilibrium state

(see, for instance [5, 9–12]). However, in this work we are interested in the transient analysis of

the dynamics, described by the conservation of momentum equation, as outlined by Taylor et al. in

[6], for the case of nonlinearly elastic membranes. Our goal is to expand the analysis conducted

by Taylor et al. to include Newtonian and non-Newtonian membranes. For the non-Newtonian

membranes we characterize the stresses by the Maxwell model [13]. We use this infinitesimal strain

model within the general framework developed by Taylor et al. in [6] for finite strain theory, with

the aim of expanding our analysis in future works, by including nonlinearities and corrotational

effects.

Viscoelastic materials exhibit features that are typical of both fluids (viscosity) and solids (elas-

ticity). This hybrid nature allows it to characterize a broad variety of materials, with limiting cases

that fall under a liquid state, or a solid state, and intermediate regimes that constitute soft materials,

such as gels [14]. The evolution of their complex internal microstructures can affect their dynamics

and the overall macroscopic rheology [15]. The majority of the previous studies on viscoelastic

membranes focus on the rheological responses of the material to deformations (see, e.g., [2, 16, 17]),

but only a few works investigate the dynamics of such membranes; see, for instance, [1], in which

the dynamics of the viscoelastic membrane is coupled to the hydrodynamics of the surrounding

viscous phase. Among the numerous studies on the rheology of viscoelastic membranes, Lubarda

and Marzani [3] use the Kelvin-Voigt type of constitutive model, that is more suitable to describe

viscoelastic solids [18], and Crawford and Earnshaw [19] use the Maxwell model, more suitable for

the description of viscoelastic liquids [20], to identify the relaxation time of bilayer lipid membranes.

Moreover, some studies propose numerical solutions of the dynamics of thin layers of viscoelastic

fluids within the lubrication theory to simulate the interfacial flow of thin viscoelastic films of Jef-

freys type [21], deposited on substrates, in wetting or dewetting processes [22–24]. However, to the

best of our knowledge, a numerical investigation solving for the equation of motion describing the

hydrodynamics of the free-boundary flow of thin viscoelastic membranes of Maxwell type is lacking.

The aim of this work is therefore to provide a general numerical framework for the simulations of

thin viscoelastic membranes, and to analyze the role of viscoelasticity on their dynamics arising
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in different settings or engineering processes, such as shearing flows [20] or stretching in redraw

processes [25, 26].

The Maxwell model belongs to a class of linear differential models for non-Newtonian fluids,

that describes mechanical properties such as “fading memory” and stress relaxation [20]. These

features become remarkable, especially when compared to constitutive models that describe a linear

relationship between the stress and the strain (in the case of linear elasticity) or strain rate (in the

case of Newtonian fluids). The Maxwell constitutive model, in the same fashion as Hooke’s law,

was proposed empirically [13]. Although it has been applied to and proven to be useful for the

analysis of a broad range of materials, this model is limited to cases in which the deformation

gradients are infinitesimally small [20]. To overcome this limitation, variations of Maxwell model

have been proposed, such as the Oldroyd-B model [20] in which convective derivatives are introduced

to describe the nonlinearities in the stress tensor. Despite the limitations of a linear viscoelastic

model, such as the Maxwell model, we believe that a comprehensive analysis as well as a detailed

numerical framework for the dynamics of thin viscoelastic membranes, can serve as a benchmark

for future analyses that include nonlinear features, such as the convective/corrotational variations

of the stress.

The governing equation describes the conservation of linear momentum. To the typical steady

formulation in which the balance of forces is considered, we retain the inertial term so we may

consider transient analyses [27, 28]. The incompressibility condition that typically serves as a con-

straint on the vector velocity field in the equations describing the fluid dynamics [29] is replaced

in this work via the use of a penalty method [30, 31]. This method, first introduced by Courant

[32] for solutions of problems of equilibrium and vibrations, obtained by the calculus of variations,

has been subsequently used to approximate solutions of the Navier-Stokes equations (see, for in-

stance, [33] and the references therein). In the context of solutions of fluid flows, it relaxes the

incompressibility condition allowing for a small perturbation of the volume change, which approx-

imates the near incompressibility of the fluid. We propose a formulation of the penalty function

as a direct proportionality on the rate of change of the volumetric strain, in which the constant of

proportionality depends on the viscosity of the fluid.

In this numerical investigation, we use the finite element method for the spatial discretization

of the slender geometry describing the membranes, and implicit schemes to discretize the time

variations in the governing and constitutive equations. Finite element analyses of linearly elastic

shells or membranes constitute a computational advantage relative to volumetric analyses and are

vast in the Continuum Mechanics literature (see, e.g. [6, 27, 34, 35]), but, to the best of our

knowledge, none of the existing analyses included viscoelastic stresses of Maxwell type that can be

adapted to Fluid Mechanics problems. We approximate the membrane with a mesh, constituted

of linear 3-node triangles embedded in a three-dimensional global coordinate system (i.e. elements

with nine degrees of freedom with respect to the global coordinates), and obtain the stress state
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Figure 1: The surface coordinate system on a triangular element in the deformed configuration.

on the surface of the membrane in terms of the nodal displacements. The spatial discretization

formulation adopted closely follows the one by Taylor et al. [6], however, the novel aspects are

the inclusion of viscoelasticity in the constitutive model, and the corresponding derivation of the

material Jacobian (stiffness) tensor.

The remainder of this work is organized as follows: In § 2, we introduce the mathematical formu-

lation and finite element analysis of the governing equation (whose detailed theoretical derivation

is given in the Appendix); In § 3, we introduce the material models considered in this analysis

both in continuous and discrete form; In § 4, we discuss our numerical results; In § 5, we draw our

conclusions.

2. Mathematical Formulation

We consider a nearly incompressible viscoelastic liquid membrane with constant density ρ, sur-

rounded by a passive gas with constant pressure. The equation describing the balance of linear

momentum is

div(σ) + Fb = ρü, in Ω , (1)

where u = (u1(x1, x2, x3, t), u2(x1, x2, x3, t), u3(x1, x2, x3, t)) represents the vector displacement

field in a global coordinate system, ü = d2u/dt2 in a Lagrangian formulation, Fb is the vector

of the body force (such as gravity), div(σ) = ∇ · σ, with σ the symmetric stress tensor, and Ω is

the two-dimensional surface embedded in R3. In what follows, we outline the weak and discrete

versions of equation (1), leaving the detailed derivation for the interested reader in the Appendix.

We discretize the domain Ω with finite elements, in which each element represents a triangular

membrane, uniquely described by its three vertices (nodes) in R3 (see figure 1). By considering a
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global Cartesian coordinate system, we denote by upper case X the reference (undeformed state)

configuration coordinates, and by lower case x the current (deformed state) ones. We denote the

nodal values of the reference coordinates, current coordinates and displacement vector, respectively,

by the use of superscripts, i.e X̃α, x̃α, and ũα = x̃α − X̃α, with α = 1, 2, 3 for each node. By using

the virtual displacement field, δu, we apply the virtual work formulation [6, 27], and obtain the

weak form of (1) as

δΠ =

∫
Ω(e)

δuT ρü d V −
∫

Ω(e)

δεTσ d V −
∫

Ω(e)

δuTFb d V = 0 , (2)

where [·]T represents the matrix transpose operator, ε the symmetric strain tensor, and Ω(e) the

domain of the element e. For the case of membranes of constant thickness h, we express an infinites-

imal volume element as dV = h dA. Following the displacement-based finite element formulation

provided in [6] for the spatial derivatives, we can write the spatially discrete version of the volume

contribution terms (i.e. without the traction term) of equation (2), for each element, in vector form,

as  F̃1
b

F̃2
b

F̃3
b

−M(e)


¨̃u

1

¨̃u
2

¨̃u
3

− hA(e)B(e)T

 σ11

σ22

σ12

 = 0 , (3)

where we have used Voigt notation [27] for the symmetric stress tensor in vector form for two-

dimensional problems, defined by

σ =

 σ11

σ22

σ12

 ,
and where A(e) represents the area of each triangular element in the reference configuration; the

vector F̃b = (F̃1
b, F̃

2
b, F̃

3
b) represents the nodal body force; M(e) is the element mass matrix, and

B(e)Tσ represents the divergence of the stress tensor on each element. In each triangle, we consider

that both the strain and the stress tensors are constant. The interested reader can find the details

of the derivation of each term in the Appendix. Our goal is to solve equation (3) for the nodal

displacement field. We note that the nodal displacement vectors, ũα (α = 1, 2, 3), as well as the

nodal force vectors, F̃αb (α = 1, 2, 3), represent three-dimensional vectors for each node, in the global

coordinates. Hence, in components, we will solve for nine scalar equations, even though the strain

and the stress tensors only account for the in-plane displacements.
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3. Constitutive Models

To describe the material response to deformations, we need to express a constitutive law that

relates the stress tensor and the strain and/or strain rate tensors. We consider a small deformation

strain, within the general framework presented by Taylor et al. [6] that allows nonlinearities due to

large deformations (derived in the Appendix). For membrane problems, the in-plane magnitudes

of the stress are dominant relative to the out-of-plane ones, leading to the conditions on the stress

tensor components σ13 = σ23 = σ33 = 0. In two spatial dimensions, the deviatoric stress is defined,

in tensor form, as

σ′ij = σij −
1

2
σkkδij , (4)

where δij is the Kronecker delta (i, j = 1, 2), and σkk is the trace of the stress tensor in indicial

notation, i.e. σkk = σ11 + σ22. In infinitesimal strain theory [27], the linear (small deformation)

strain is given, in tensor form, by εij = (∂ui/∂xj + ∂uj/∂xi) /2. In two dimensions, the trace of

the strain tensor, also called the volumetric strain, is denoted by εvol = εkk = ε11 + ε22. We call

hydrostatic strain the mean of the normal strains, that is, εhyd = εkk/2. With this definition, we

can also define the deviatoric strain, ε′ij , satisfying

ε′ij = εij −
1

2
εkkδij . (5)

An important material parameter related to the response to (uniform) hydrostatic pressure in linear

elasticity of isotropic media is the bulk modulus, K, and it is related to other material parameters

such as ν, the Poisson’s ratio, and Y , the Young’s modulus, via the relationship ν = 1/2 − Y/6K
[27]. We notice that for K � Y , meaning in the limiting case in which K →∞ (i.e. for ν → 1/2), we

approach the incompressible limit. However, for nearly incompressible materials, a penalty function

[30] that allows for small perturbations to the trace of the strain, representing the volumetric change,

is given by

εkk + phyd/K = 0 . (6)

Hence we find an expression for the hydrostatic pressure in terms of the volume variation, given by

phyd = −Kεkk , (7)

We observe that for the limiting case of an incompressible material, i.e. with K →∞, equation (6)

leads to the divergence-free condition on the displacement field, div(u) = 0.

In this work, we expand the condition (6) to account for the hydrodynamic pressure in liquids,

denoted by p. In constitutive models describing liquids, the stress response is directly proportional
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not to the strain, but to the rate of change of the strain, namely ε̇. Accordingly, the consideration

of a penalty method for liquids needs to take into account the strain rate [31]. We introduce a

penalty formulation for the variation of the volume of nearly incompressible liquids

ε̇kk + p/K̂ = 0 , (8)

for which the pressure in the liquid is then given in terms of the trace of the strain rate by

p = −K̂ε̇kk , (9)

with the penalty constant, K̂, such that

K̂ � η , (10)

where η represents the shear viscosity coefficient.

We start our constitutive analysis by introducing the Newtonian constitutive model for viscous

liquids, given by

σij = 2ηε̇′ij + K̂ε̇kkδij . (11)

Next, we include in our analysis viscoelastic fluids. Different linear viscoelastic constitutive models

of interest can be expressed in linear differential form [18, 20, 36]. The Maxwell constitutive model

for viscoelastic liquids is given by

σij + τ∂tσ
′
ij = 2ηε̇′ij + K̂ε̇kkδij , (12)

where τ is the relaxation time constant, such that τ = 2η/G, with G the shear modulus [20]. We

notice that when τ = 0 we recover the Newtonian fluid constitutive law in equation (11). When

τ > 0, it determines the rate at which the stress relaxes (i.e decays) for constant strain. Maxwell

model can interpolate between a linearly viscous and elastic behavior. In fact, when the stress

applied has a fast time variation, the left hand side of equation (12) is dominated by the time

derivative, and, upon time integration, the constitutive law for linearly elastic solids is recovered

[20].

3.1. Time Discretization

The time interval t ∈ [0, T ] is discretized by n equal steps, with n = 0, 1, . . ., and ∆t is the

temporal step size considered. At each spatial material point, we denote the stress at the previously

converged time step by σn, and at the current time step by σn+1. We define the rate of change of

the strain tensor with a finite difference ε̇n+1 = (εn+1− εn)/∆t, and similarly for the stress tensor.
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We consider initial conditions on both the strain and the stress to be ε0 = σ0 = 0. We can hence

write the discrete form of equation (11), in indicial form, as

σn+1
ij =

2η

∆t

{(
εij −

1

2
εkkδij

)n+1

−
(
εij −

1

2
εkkδij

)n}
+
K̂

∆t

{
εn+1
kk δij − εnkkδij

}
, (13)

and in vector form as σ11

σ22

σ12


n+1

=
2η

∆t




1
2ε11 − 1

2ε22

− 1
2ε11 + 1

2ε22

γ12


n+1

−


1
2ε11 − 1

2ε22

− 1
2ε11 + 1

2ε22

γ12


n
+

K̂

∆t


 ε11 + ε22

ε11 + ε22

0


n+1

−

 ε11 + ε22

ε11 + ε22

0


n
 , (14)

where we have used the notation γ12 = 2ε12, for which in vector form shear strain components are

twice that given in tensor form [27]. We consider the algorithmic consistent Jacobian (or stiffness)

fourth order tensor to be defined for the case of Newtonian fluids as

Cijlm =
∂σn+1

ij

∂ε̇n+1
lm

= η(δilδjm + δimδjl)− ηδijδlm + K̂δijδlm . (15)

This way, we can write equation (11) in matrix form as a linear relation between the stress tensor

and the strain rate tensor with a constant coefficient matrix, Dv. We shall refer to Dv as the

viscosity matrix of moduli, analogously to the elasticity matrix of moduli [27], and write

σn+1 = Dv ε̇
′n+1 , (16)

in components,

Dv =



cv
2 + K̂ − cv2 + K̂ 0

− cv2 + K̂ cv
2 + K̂ 0

0 0 cv
2

 , (17)

where we have used the constant cv = 2η.

Similarly, we discretize the Maxwell model, in equation (12), by considering the stress implicitly.
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In indicial form, it becomes

σ′ij
n+1

=

(
1 +

∆t

τ

)−1
{
σ′ij

n
+

2η

τ

[(
εij −

1

2
εkkδij

)n+1

−
(
εij −

1

2
εkkδij

)n]
+

K̂

τ

[
εn+1
kk δij − εnkkδij

]}
, (18)

which may be written in vector form, as

 σ′11

σ′22

σ′12


n+1

=

(
1 +

∆t

τ

)−1


 σ′11

σ′22

σ′12


′n

+
2η

τ




1
2ε11 − 1

2ε22

− 1
2ε11 + 1

2ε22

γ12


n+1

−


1
2ε11 − 1

2ε22

− 1
2ε11 + 1

2ε22

γ12


n
 +

K̂

τ


 ε11 + ε22

ε11 + ε22

0


n+1

−

 ε11 + ε22

ε11 + ε22

0


n

 . (19)

Now we can rewrite the relation in equation (12) in matrix form, with a constant coefficient matrix,

Dve, that we shall call the viscoelasticity matrix of moduli. This matrix does not express a direct

proportionality between the variation of the stress and the one of the strain, as in the viscous case.

But it expresses the variation of the total change of the algorithmic stress (including its history)

with respect to the rate of change of the strain, that is

σn+1 + τ∂tσ
′n+1 = Dveε̇

′n+1 , (20)

where in components Dve has the same form as the Newtonian one, in equation (17), except for

the constant that now is defined as cve = cv/τ , and K̂/τ appears in place of K̂.

The discrete material models presented are implemented as a user defined subroutine for the

software Abaqus/Standard 6.13, and the time derivatives of equation (3) are discretized implicitly

with a generalized Newmark scheme [37].

4. Results and Discussion

4.1. Convergence Tests

We present our numerical results in absence of gravity, and in terms of the surface coordinate

system, for which the surface vector displacement and applied loads only have two in-plane nontrivial

components, and therefore we omit the null third component to avoid cumbersome notation. To

validate our formulation and implementation, we have performed several convergence tests. One

of the typical convergence tests for membrane structures is the Cook’s membrane [38, 39]. This is
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Figure 2: The left panel shows the Cook’s membrane schematic for the numerical experiment. On the right panel,
we display the values of the ramp of the amplitude of the applied load, denoted by A, versus the normalized time,
not in the same scale.

(a) (b)

Figure 3: The final configuration, at t? = 1, of a Cook’s membrane of viscoelastic material of Maxwell type,
with viscosity coefficient η = 10Pa s, and relaxation time τ = 1 s. The color gradient represents contour plots
of the displacement field, in which warmer shades mean higher values. In (a), we show the first component of
the displacement field, u1, that ranges between its minimum value, u1min = 0 m (blue), and its maximum value,
u1max = 5.686 × 10−3 m (red). In (b), we display the second component, u2, that ranges between its minimum
value, u2min = −3.275× 10−3 m (blue), and its maximum value, u2max = 0 m (red).

a free-boundary problem in which a membrane, shaped as in the left panel of figure 2, undergoes

a load on its top boundary, while its bottom boundary is held fixed. We apply a horizontal load

along the top boundary, given by F = (1, 0) N, and the bottom boundary satisfies a homogeneous

Dirichelet boundary condition on the displacement field, i.e. u = (0, 0) m. All other boundaries of

the membrane are free to move, and satisfy no-flux and traction-free boundary conditions. For the

convergence test of both the Newtonian and Maxwell models, we apply a load with an amplitude

A, linearly varying in time, as shown in the right panel of figure 2. In problems in which a load is

applied and/or removed, we relate the time of the loading/unloading phases to the characteristic
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Figure 4: Convergence tests for the Cook’s membrane for Maxwell (red square data on blue dashed curve) and
Newtonian (red circle data on blue solid curve) models. We display the relative error on the computed u1, as
measured at the top-right corner of the deformed Cook’s membrane, at time t? = 1, versus the number of elements,
Ne = 8, 22, 80, 336, both in logarithmic scale.

time of the response of the material. For the case of Maxwell liquids we scale the time interval of

the loading/unloading phases by the normalized time t? = t/τ . On the other hand, for Newtonian

liquids, we use t? = t/tc, where tc = 1 s is a characteristic time scale for viscous fluids. For the

numerical investigations that follow, we consider membranes of viscosity coefficient η = 10 Pa s,

density ρ = 103 kg/m3, and relaxation time τ = 1 s for the Maxwellian (for Maxwell model)

membrane, unless specified differently. In figure 3 we show the deformed Maxwellian membrane at

time t? = 1, discretized by an unstructured mesh composed of 336 triangular elements. We display

the contour plots of the vector displacement field, for which warmer shades indicate higher values.

In figure 3(a) we show the contour plot of the first component of the vector displacement field, u1,

that ranges between its minimum value, u1min = 0 m (blue), on the bottom boundary, and its

maximum value, u1max = 5.686× 10−3 m, (red) on the top-right corner of the membrane. In figure

3(b), we display the contour plot of the second component of the vector displacement field, u2, that

ranges between its minimum value, u2min = −3.275× 10−3 m (blue), on the top-right corner of the

membrane, and its maximum value, u2max = 0 m (red), on the left boundary.

By performing several numerical experiments, with a fixed time step, ∆t = 10−4 s, and refined

unstructured meshes, we can have a quantitative analysis of the convergence of our numerical

algorithms, equations (14) and (19), and show that our results converge under mesh refinement. In

figure 4, we show our numerical results of the relative error on the computed u1, as measured at the

top-right corner of the deformed Cook’s membrane, at time t? = 1, versus the number of elements,

Ne = 2, 8, 22, 80, 336, both in logarithmic scale. For the computation of the relative error, we have

considered as approximation of the actual solution, the results obtained with an unstructured mesh

composed of Ne = 1346 elements. We represent with red squares on a blue dashed curve the data

for the Maxwellian membrane, and with red circles on a blue solid curve the Newtonian one. We

11
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Figure 5: The computed volumetric strain, εkk, versus the dimensionless constant η/K̂, for different values of

K̂ = 102, 5× 102, 103, 5× 103, 7.5× 103, 104 Pa s, keeping η = 10 Pa s fixed, both in logarithmic scale.

can see that the results of our implementation of both constitutive models converge, with increasing

number of elements.

A validation test for the pressure formulation and the near incompressibility condition is given

by a tension experiment. For this test, the liquid membrane is deposited on a plane and surrounded

by rigid plates, forming a square bounding box. On the left boundary, the plate is allowed to

move vertically, by imposing a zero boundary condition for u1. On the bottom boundary, the

plate is allowed to move horizontally, by imposing a zero boundary condition for u2. The right

boundary satisfies a no-flux and traction-free boundary condition. The top boundary satisfies a

no-flux boundary condition and it is displaced linearly in time by u = (0, 0.005) m, such that for

t? = 0, the corresponding amplitude is A = 0, and for t? = 1, the corresponding amplitude is A = 1.

Hence, by studying the dimensionless parameter related to the pressure, η/K̂, we can quantitatively

verify that the pressure formulation leads, in the limit, to incompressibility. In figure 5, we show

the results of our simulations for the Maxwellian film. We measure the computed volumetric strain,

εkk, for different values of K̂ = 102, 5 × 102, 103, 5 × 103, 7.5 × 103, 104 Pa s, keeping η = 10 Pa s

fixed, both in logarithmic scale. We can see that the data corresponding to the small values of the

dimensionless ratio η/K̂, have a smaller volume change εkk. We have found that the optimal range

for the near incompressibility condition is η/K̂ ∈ [10−3, 10−1]. For values outside of this range the

penalty method leads to stringent constraints on the time step [33, 40].

4.2. Membrane deformation under shear flow

The first application we consider is the simple shear flow [20, 29] of a thin liquid layer between

parallel rigid plates. In this investigation, we do not include friction effects between the liquid

layer and the rigid plates. The shear motion is obtained by holding fixed the bottom boundary

of the plates, and by horizontally shearing the top boundary, by either imposing a horizontal

12



Figure 6: Schematic of a sheared membrane between parallel plates. Both plates are sheared on the top, held fixed
at the bottom, and no-flux and traction-free boundary conditions are applied on the lateral boundaries of the plates.
Friction between the liquid and the plates is neglected.

displacement, or a horizontal force. In figure 6, we show the schematic of the setup of this numerical

experiment, where square membranes of length L = 10−1 m are used. For the first numerical

experiment, a constant horizontal load F = (10−2, 0) N has been linearly applied in time for

t? = 5. The right and left boundaries satisfy a traction-free and no-flux boundary conditions,

and the bottom boundary is clamped. In figure 7, we show the final configuration of sheared

membranes of Maxwell type, compared to a viscous one. The contour plots of u1, are displayed at

time t? = 1, 2, 5 (from left to right), where the red color represents the maximum value attained at

t? = 5, u1max = 2.381×10−2 m, and the blue color represents the minimum value, u1min = 0 m. The

viscosity coefficient for all membranes is η = 20 Pa s, and the relaxation times are τ = 0, 0.5, 1, 2, 5 s,

(from top to bottom). We observe that the liquid membrane of Maxwell type with the highest

relaxation time has deformed the most, corresponding to a longer dimensional time of imposed

load. Since this numerical experiment reproduces a simple shear motion, the second component of

the displacement is identically zero, and it is not displayed.

Next, we investigate the effect of the relaxation time on both the stress and the displacement

in the simple shear flow. We observe that the relaxation time, τ = 2η/G, represents the ratio of

the shear viscosity coefficient over the shear elastic modulus. Hence by keeping the viscosity fixed,

and by increasing τ , we increase the importance of viscosity relative to elasticity. In this test case,

we displace the top plates by applying a velocity of v = (10−4, 0) m/s. This boundary condition is

time-dependent, with the magnitude of the applied velocity linearly decreasing in time, similarly to

the ramp in figure 2, but with final time t? = 4. In figure 8, we plot the time evolution of the shear

13



Figure 7: Comparison of the evolution of sheared membranes of Newtonian and Maxwellian fluids. The contour
plots of u1, are displayed at time t? = 1, 2, 5 (from left to right), where the red color represents the maximum value
attained at t? = 5, u1max = 2.381× 10−2 m, and the blue color represents the minimum value, u1min = 0 m. The
viscosity coefficient for all membranes is η = 20 Pa s, and the relaxation times are τ = 0, 0.5, 1, 2, 5 s, (from top to
bottom).
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Figure 8: Evolution of the shear stress component, σ12, of sheared membranes, for different values of the relaxation
time τ = 0 s (blue solid curve), 0.5 s (green dashed curve), 1 s (purple dash-dotted curve), 2 s (yellow dashed curve),
5 s (red dotted curve).
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Figure 9: Evolution of u1, measured from the top-right corner of the sheared membrane, for different values of the
relaxation time τ = 0 s (blue solid curve), 0.5 s (green dashed curve), 1 s (purple dash-dotted curve), 2 s (yellow
dashed curve), 5 s (red dotted curve).

stress component, σ12, for the values of the relaxation time τ = 0 s (blue solid curve), 0.5 s (green

dashed curve), 1 s (purple dash-dotted curve), 2 s (yellow dashed curve), 5 s (red dotted curve).

In this figure we can see that the limiting case, for τ = 0 s, that corresponds to a Newtonian fluid,

exhibits the linear relationship between the shear stress and strain rate. Moreover, the Maxwellian

liquid of relaxation time τ = 0.5 s shows a similar behavior, and the ones with τ > 1 s show the

stress relaxation feature, typical of Maxwell model [20], in which the peak of shear stress is lowered

by higher values of the relaxation time.

Following that, we carry out one last parameter study on the relaxation time. For this test case,

and different from the previous one in which we imposed an initial velocity for the shear motion,

we displace the top plate by applying a horizontal load F = (0.1, 0) N, linearly decreasing in time,

similarly to the ramp in figure 2, but with final time t? = 25. When the load or the deformation is
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Figure 10: Schematic of the drawing process of a thin viscoelastic membrane (not in scale), and the temperature
profile at the location of the furnace.

removed, different behaviors occur according to the material model considered. A linearly elastic

material bounces back and forth, with no constitutive dissipation. A Newtonian liquid exhibits

resistance to the shearing velocity and no elastic behavior. A Maxwell liquid can combine both

these two characteristic behaviors, as described in § 3.1. We measure u1, on the top-right corner of

the membrane, and track its evolution in time. In figure 9 we show the values corresponding to the

results with τ = 0 s (blue solid curve), 0.5 s (green dashed curve), 1 s (purple dash-dotted curve),

2 s (yellow dashed curve), 5 s (red dotted curve). We observe how the viscous fluid, corresponding

to the curve with τ = 0 s, reaches a plateau and does not exhibit any elastic effects. In fact,

even when the load is removed, the Newtonian membrane displacement remains constant. On the

contrary, the Maxwell liquids exhibit a nearly elastic response in the early times, that is dissipated

by viscosity in later times. As stated in the previous paragraph, by increasing the relaxation time

τ , at parity of viscosity coefficient, we increase the importance of the viscosity relative to elasticity.

We can in fact see the increasing effects of viscosity in the oscillations with smaller amplitude and

larger wavelengths for the curves of τ > 1 s.

4.3. Membrane deformation under extensional flow

Finally, we consider the application of the drawing of viscoelastic membranes with constant

thickness, as a planar study of a more general redrawing processes of viscoelastic flat sheets [41].

Drawing or redrawing processes are manufacturing practices for which a sheet, usually of glass or

metal, is heated and stretched to obtain a reduced cross sectional area, such as in the production of

glass fibers (see [25, 26, 41] and references therein). We model the sheet as a slender membrane of

initial length L = 100 mm and width W = 1 mm, with its bottom-left corner coinciding with the

origin of the surface coordinate system (see the Appendix) in reference state, (Y1, Y2), as depicted in

figure 10. The membrane is clamped on its right and left boundaries to rigid walls that move with a

drawing velocity on the right boundary, vd = (10−3, 0) m/s, and a feed velocity on the left boundary,

vf = (10−4, 0) m/s, respectively. The top and bottom boundary satisfy no-flux and traction-free
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boundary conditions. As the membrane is drawn, it passes a heated region, representing an idealized

furnace, starting at location Y1 = 40 mm. The furnace temperature follows a linear profile that

increases from the ambient temperature, Ta = 300 K, reaching its maximum, Tf = 400 K, that is

held constant for 45 mm < Y1 < 55 mm, and returns to the ambient temperature at Y1 = 60 mm,

as shown in figure 10. According to the industrial application of interest, the dimension of the

membrane and the furnace can vary [25]. We are interested in industrially relevant processes where

the furnace zone is short relative to the membrane length, but large relative to the membrane

width. Consistent with Srinivasan et al. [41], we assume that the temperature irradiation between

the heating device and the viscoelastic membrane is in equilibrium, so that the temperature in the

fluid equals the one prescribed by the furnace. As the temperature reaches its maximum, we model

the viscosity as linearly dependent on the temperature T , according to the following expression

η = ηa −
ηf − ηa
Tf − Ta

(T − Ta) , (21)

where we have considered the difference between the viscosity of the liquid in the furnace, ηf , and

in the ambient, ηa, to be modeled as ηf − ηa = ηa/2, with ηa = 1 Pa s.

In figure 11, we show contour plots of u2 (on the left panel) and the second normal stress

component, σ22 (on the right panel), for the quasi-static solution of the central region of drawn

membranes, of relaxation time τ = 0, 0.5, 1, 2, 5 s, (from top to bottom), at t ∼ 10 s. As the

membranes are stretched, they exhibit some necking in their central part, corresponding to the

region of lowest viscosity, consistently with [42]. The blue color on the top of the necking region

represents the minimum value of u2, u2min = −5.863× 10−5 m, and the red color at the bottom of

the necking region represents its maximum value, u2max = −u2min. In addition, by analyzing the

stresses, we can identify the onset of buckling, leading to wrinkling instabilities, that are known

to arise when viscous [41, 42] or elastic [43] sheets are stretched. The principal stress σ22 has

reached its maximum value value, σ22max = 3.759×10−1 Pa, represented by the red shades, and its

minimum value, σ22min = −1× 10−3 Pa, represented by the blue shades. The region of maximum

stress represents the onset of buckling, due to the in-plane compression generated by Poisson’s effect

[43]. In figure 12, we show the evolution of the point of maximum necking, at the center of the

redrawn Newtonian and Maxwellian sheets. We plot u2, at the midpoint of the top boundary of the

stretched film, for τ = 0 s (blue solid curve), 0.1 s (green dashed curve), 0.25 s (purple dash-dotted

curve), 0.5 s (yellow dashed curve), 0.75 s (red dotted curve), 1 s (black solid curve), 2 s (magenta

dash-dotted curve), 5 s (orange solid curve), and 10 s (light blue dashed curve), both in logarithmic

scale. We can see that the Maxwellian membranes with higher values of the relaxation time exhibit

more necking. Finally, we investigate the maximum stretch, defined as ε = u1max/L, attained

by the elongated membranes before the onset of buckling. This quantity, industrially relevant,

can help manufacturers avoid undesired wrinkling instabilities. In figure 13, we investigate the
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Figure 11: Central region of drawn viscoelastic membranes. On the left panel, contour plots of u2, for the quasi-static
solution of drawn membranes, of relaxation time τ = 0, 0.5, 1, 2, 5 s, (from top to bottom), at t ∼ 10 s. The blue color
on the top of the necking region represents the minimum value of u2, u2min = −5.863×10−5 m, and the red color at
the bottom of the necking region represents its maximum value, u2max = −u2min. On the right panel, contour plots
of the second normal stress component, σ22, at time t ∼ 10 s. The principal stress σ22 has reached its maximum value
value, σ22max = 3.759× 10−1 Pa, represented by the red shades, and its minimum value, σ22min = −1× 10−3 Pa,
represented by the blue shades. The region of maximum stress represents the onset of buckling.

influence of the relaxation time, for τ ∈ [0, 10] s, on ε, for four different sets of feeding and drawing

velocities: vf = (10−4, 0) m/s and vd = (10−3, 0) m/s (blue solid curve), vf = (5 × 10−4, 0) m/s

and vd = (10−3, 0) m/s (magenta dotted curve), vf = (10−4, 0) m/s and vd = (5 × 10−3, 0) m/s

(black solid curve), and vf = (5× 10−4, 0) m/s and vd = (5× 10−3, 0) m/s (red dotted curve). We

can see that membranes that are drawn at higher speeds, i.e. with vd = (5 × 10−3, 0) m/s, reach

a maximum elongation of 20% from their initial length. We moreover notice that membranes with

equal drawing velocities exhibit a similar behavior, although the ratio of the magnitude of their

drawing to feed velocities, is different, ranging from 10 for the first and third set of data, to 50 for

the second and fourth ones.

5. Conclusions

We have performed a numerical investigation of the dynamics of nearly incompressible viscoelas-

tic fluid membranes. We have introduced a displacement-based finite element formulation, in which

18



10-3 10-2 10-1 100
-10-2

-10-4

-10-6

-10-8

8 8.5 9 9.5
-8

-7

-6

-5

-4

-3
10-5

Figure 12: Comparison of u2 at the midpoint of the top boundary of the stretched Newtonian and Maxwellian
membranes, for τ = 0 s (blue solid curve), 0.1 s (green dashed curve), 0.25 s (purple dash-dotted curve), 0.5 s (yellow
dashed curve), 0.75 s (red dotted curve), 1 s (black solid curve), 2 s (magenta dash-dotted curve), 5 s (orange solid
curve), and 10 s (light blue dashed curve), both in logarithmic scale. The inset shows a magnification of the graphs
for t ∈ [8, 10] s.
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Figure 13: Stretch factor, ε = u1max/L, versus the relaxation time τ , for four different sets of feeding and drawing
velocities: vf = (10−4, 0) m/s and vd = (10−3, 0) m/s (blue solid curve), vf = (5 × 10−4, 0) m/s and vd =
(10−3, 0) m/s (magenta dotted curve), vf = (10−4, 0) m/s and vd = (5 × 10−3, 0) m/s (black solid curve), and
vf = (5× 10−4, 0) m/s and vd = (5× 10−3, 0) m/s (red dotted curve).

the stresses are expressed for both viscoelastic fluids of Maxwell type, and viscous (Newtonian)

fluids. For the nearly incompressibility condition of both the Newtonian and Maxwellian cases, we

have introduced a penalty function, in which the penalty constant is proportional to the viscosity

of the fluid. We have validated our numerical implementation with several numerical experiments,
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demonstrating mesh-independence of our results, and validity of the formulation for near incom-

pressibility, in the limit of the dimensionless parameter η/K̂.

We have focused on two main applications of our general numerical framework: shear flow

[20] and extensional flow in drawing processes [25, 26]. For the case of the simple shear flow of

membranes between parallel plates, we have investigated the effect of the relaxation time on the

stress relaxation, feature typical of Maxwell liquids [20], and the dynamics. Comparing the behavior

of sheared Newtonian and Maxwellian membranes, we have observed the effects of viscoelasticity on

the nature of the dynamics, as well as on their final configuration. We have found that Maxwellian

membranes deform the most, compared to Newtonian ones, when they are continuously sheared.

While they exhibit an elastic response, that is constitutively damped by viscosity, in the case of

loading/unloading forcing.

For the drawing process of Newtonian and Maxwellian membranes, with a temperature-dependent

viscosity, we have investigated how viscoelasticity affects the necking of the membranes in exten-

sional flows. We have found that higher values of the relaxation time enhance the necking of the

stretched membranes. Finally, we have investigated the influence of the relaxation time on the

maximum stretch attained by the membranes before the onset of wrinkling instabilities, that are

known to arise when viscous [41, 42] or elastic [43] sheets are stretched. We have found that higher

values of the relaxation time facilitate the onset of buckling and therefore the emergence of the

wrinkling instabilities.

Appendix

We describe here the details of the spatial discretization for each term in equation (2). By linear

interpolation, we can specify a position in the triangular element by X = ξαX̃
α in the reference

configuration, and x = ξαx̃
α in the current one. Where ξα represents the natural area coordinates,

or barycentric coordinates [27], such that

ξ1 + ξ2 + ξ3 = 1 . (A1)

Following [6], to describe the in-plane deformation and stresses of the membrane, it is convenient

to introduce a surface coordinate system that lays on the plane of the triangle, denoted by Y1 and

Y2, with normal direction N in the reference configuration, and y1, y2 with normal direction n in

the current state (see figure 1).

In the surface coordinate system, the origin of the coordinates, (Y1OY2) and (y1oy2) are placed

at the nodal locations, X̃1 and x̃1, respectively. The unit base vectors then may be constructed from

the linear displacement triangle, constituted by the three vertices labeled by (1, 2, 3), by aligning

the first base vector along the 1-2 side. For simplicity, we denote the edge vectors of the reference

configuration by E12 = X̃2−X̃1, E13 = X̃3−X̃1, E23 = X̃3−X̃2, and e12 = x̃2− x̃1, e13 = x̃3− x̃1,
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and e23 = x̃3 − x̃2 for the current configuration. Hence, we define the first unit base vector as

ê1 =
e12

‖e12‖
. (A2)

A vector normal to the plane of the triangle is found by E3 = E12×E13 in the reference state, and

e3 = e12 × e13 in the current state. The normal vector in the current state is normalized by

n := ê3 =
e3

‖e3‖
, (A3)

and similarly for the reference state, N := Ê3 = E3/‖E3‖. The second base vector is found by

E2 = N×E1, and analogously by e2 = n× e1 for the current configuration. Their normalized unit

vectors are found, similarly, as Ê2 = N× Ê1, and ê2 = n× ê1.

With the base vectors defined above for the plane of the triangle, we can define positions directly

as

yi = (x− x̃1) · êi . (A4)

From equation (A4), we note that for ỹ1, the expression is ỹ1 = (x̃1 − x̃1) · êi = 0. Hence, any

position y, found by interpolation of the surface coordinates reduces to

y = ξαỹ
α = ξ2ỹ

2 + ξ3ỹ
3 , (A5)

where we have used the summation convention, and equation (A1) becomes redundant.

We define the deformation gradient tensor as

F =
∂y

∂Y
= I +

∂u

∂Y
, (A6)

Moreover, we can write

F
∂Y

∂ξ
=

∂y

∂Y

∂Y

∂ξ
=
∂y

∂ξ
. (A7)

If we denote by J the Jacobian transformation tensor for the reference state, and by j the Jacobian

transformation tensor for the current state, we have

J =
∂Y

∂ξ
, j =

∂y

∂ξ
. (A8)
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Hence, we can express the deformation gradient as

F = jG , (A9)

where we have used G = J−1. Following closely the derivation by Taylor et al. in [6], we can expand

the expressions for the matrices J and j, by taking into considerations that E12 is orthogonal to

the unit vector Ê1, and analogously e12 is orthogonal to the unit vector ê1, they become

J =

[
‖E12‖ ET12E13/‖E12‖

0 Ê3/‖E12‖

]
, (A10)

and

j =

[
‖e12‖ eT12e13/‖e12‖

0 ê3/‖e12‖

]
. (A11)

We note that the symmetric part of the displacement gradient is defined as Hij = ∂ui/∂xj , and

can be recast as

H = F− I . (A12)

Thus,

ε =
1

2

(
H + HT

)
. (A13)

We can then define

C = FTF = J−T jT jJ−1 = GTgG , (A14)

where we have used g = jT j. We rewrite equation (A14) in component form as

CIJ = GiIgijGjJ , with i, j = 1, 2 , and I, J = 1, 2 , (A15)

where the components of the matrix G are

G11 =
1

J11
, G22 =

1

J22
, G12 =

−J12

J11J22
, G21 = 0 . (A16)

We can now find the relations among the indices needed for the term δεTσ in equation (2), first by
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noting that

δCIJσIJ = GiIδgijGjJσIJ = δgijsij , (A17)

where the variable sij , related to stress, is defined by

sij = GiIGjJσIJ . (A18)

We can rewrite the last transformation in matrix form

sij = QTσ , (A19)

where Q is a matrix of the change of index, defined by

Q =

 G2
11 0 0

G2
12 G2

22 G12G22

2G11G12 0 G11G22

 . (A20)

We can use equation (A17) and write the second term on the right-hand side of equation (2), as∫
Ω(e)

δεTσh dA =

∫
Ω(e)

h

2
δCIJσIJdA =

h

2
δgijsijA

(e) , (A21)

where the area of a triangular element in the reference configuration, A(e), can be calculated given

any two vectors on the reference configuration triangle, e.g. E12, and E13, by A(e) = ‖E12 ×E13‖/2.

It is convenient to rewrite equation (A21) in matrix form

1

2
δCIJSIJ = [δε11 δε22 2δε12]

 σ11

σ22

σ12

 = δεTσ , (A22)

or, in terms of the expression found in equation (A21)

1

2
δgijsij = [δg11 δg22 2δg12]

 s11

s22

s12

 =
1

2
δgTs . (A23)

We can finally write

δε =
1

2
δC = Qbδx̃ , (A24)
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where the vector x̃ represents the three nodal values stacked in a (9 × 1) column vector, and b is

the strain-displacement matrix, given by

b =

 −eT12 eT12 0

−eT13 0 eT13

−(e12 + e13)T eT13 eT12

 . (A25)

Finally, we can form the divergence operator matrix, for each element, B(e), in equation (2), in

terms of variations of the displacement for each element, as

B(e) = Qb . (A26)

We next need to define the matrix M(e), in equation (2), representing the mass matrix for each

element, whose components are given by

M
(e)
αβ =

∫
Ω(e)

ρhξαξβdA I . (A27)

The last vector used in equation (2), F̃b, represents the constant nodal body force, such as gravity,

that is trivially linearly interpolated at the nodes, and its description is omitted here.
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