
EPJ E
Soft Matter and 
Biological Physics

your physics journal

EPJ .org

Eur. Phys. J. E (2019) 42: 12 DOI 10.1140/epje/i2019-11774-2

Thin viscoelastic dewetting films of Jeffreys type
subjected to gravity and substrate interactions

Valeria Barra, Shahriar Afkhami and Lou Kondic



DOI 10.1140/epje/i2019-11774-2

Regular Article

Eur. Phys. J. E (2019) 42: 12 THE EUROPEAN
PHYSICAL JOURNAL E

Thin viscoelastic dewetting films of Jeffreys type subjected to
gravity and substrate interactions⋆

Valeria Barraa, Shahriar Afkhamib, and Lou Kondic

Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ, 07102, USA

Received 4 May 2018 and Received in final form 27 September 2018
Published online: 30 January 2019
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Abstract. This work presents a study of the interfacial dynamics of thin viscoelastic films subjected to
the gravitational force and substrate interactions induced by the disjoining pressure, in two spatial di-
mensions. The governing equation is derived as a long-wave approximation of the Navier-Stokes equations
for incompressible viscoelastic liquids under the effect of gravity, with the Jeffreys model for viscoelastic
stresses. For the particular cases of horizontal or inverted planes, the linear stability analysis is performed
to investigate the influence of the physical parameters involved on the growth rate and length scales of
instabilities. Numerical simulations of the nonlinear regime of the dewetting process are presented for the
particular case of an inverted plane. Both gravity and the disjoining pressure are found to affect not only
the length scale of instabilities, but also the final configuration of dewetting, by favoring the formation of
satellite droplets, that are suppressed by the slippage with the solid substrate.

1 Introduction

Wetting or dewetting phenomena are of great importance
for different types of scientific and industrial processes,
such as painting, coating or printing. For this reason, free-
boundary or interfacial flows have been intensively studied
(see, for instance, the reviews [1,2] and references therein).
To capture the interface instabilities, the position of the
interface, or boundary between the different phases, needs
to be modeled and found as a part of the solution of the
equations governing the fluid flow [3]. The goal of the
present work is to provide the mathematical description
and a numerical investigation of the interfacial dynamics
for free-boundary flows of thin layers of fluids, in the par-
ticular case in which the liquid of interest is a viscoelastic
fluid of Jeffreys type [4], subjected to both the disjoining
pressure with the substrate [5] and the gravitational force.

Among the broad spectrum of natural or synthetic thin
layers of liquids, viscoelastic films are ubiquitous. Poly-
meric liquids, in particular, are one example of viscoelas-
tic liquids, constituted by a Newtonian (viscous) solvent
and a non-Newtonian (polymeric) solute, and, possess in-
teresting features, such as the stress relaxation and “fad-
ing memory” [6]. As other suspensions or emulsions, poly-
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meric liquids are considered one type of complex fluids.
Viscoelastic liquids are, in turn, part of the wider class of
non-Newtonian fluids. They are characterized by the fact
that the stress tensor is dependent on the strain rate via a
relationship that is generally nonlinear, and that can be,
as in the model used in the present work, differential.

Historically, the foundations of the long-wave (or lu-
brication) theory were laid in a pioneering work by
Reynolds [7], that analyzed the behavior of a viscous liquid
confined between a solid substrate and a fluid-lubricated
slipper bearing [8]. Subsequently, the understanding of
the interfacial instability phenomena arising in polymeric
films dewetting substrates has motivated many theoret-
ical and experimental studies, see, e.g., [9–12]. For the
case in which the gravitational body force is neglected,
the long-wave formulation for thin viscoelastic films of Jef-
freys type, subjected to substrate interactions, was devel-
oped by Rauscher et al. [13], and subsequently treated in
regimes of weak and strong slippage with the substrate by
Blossey et al. [14], as well as in the book [15]. A numeri-
cal investigation of the formulation provided by Rauscher
et al. [13] was performed by the authors in [16]. More-
over, numerical studies concerning wetting and dewetting
thin viscoelastic films, in the case of absence of gravity
and slippage with the substrate, were carried out, for in-
stance, by Tomar et al. [17], and, more recently, by Ben-
zaquen et al. [18], who have used the Maxwell model [19]
to describe viscoelastic stresses. However, to the best of
our knowledge, the derivation of a thin-film equation for
viscoelastic films of Jeffreys type under the effects of both
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the gravitational force and the disjoining pressure, that
also includes the slippage with the substrate, is missing in
the literature. Hence, such a derivation is proposed in the
present study.

Among the different types of interfacial instabilities,
the ones due to thin films flowing down inclined planes
have been widely studied for the case of viscous liquids
(see, for instance, [20–26]). Most recently, dripping phe-
nomena due to the competition between the Rayleigh-
Taylor [27] (RT) and Kapitza [28] instabilities have been
explored for viscous films flowing down planes, inclined at
angles larger than π/2 with respect to the base, using the
Weighted Residual Integral Boundary Layer model [29].
Moreover, in recent times, some industrial applications,
such as the manufacturing of very thin (and possibly flex-
ible) displays, have motivated similar investigations in-
volving complex fluids, such as nematic liquid crystals [30],
variable-viscosity fluids [31], or shear-thinning liquids [32].
Moreover, Kaus and Becker have carried out a numerical
investigation focusing on the RT instabilities of bi-layers
of Maxwell fluids deposited on viscous ones [33], in which
they confirmed that elasticity speeds up the growth of
the RT instability. However, to the best of our knowledge,
a similar numerical investigation that uses the Jeffreys
viscoelastic model is not available in the literature. The
goal of this study is not only to investigate the effects of
viscoelasticity on the interfacial flows of thin viscoelastic
films hanging on inverted planes, but also to analyze the
competing effects of the different forces at play.

For thin-film approximations, the van der Waals at-
traction/repulsion interaction force is used to model the
film breakup and the consequent dewetting process, as well
as to impose the contact angle with the solid substrate.
This force induces an equilibrium film on the solid sub-
strate, leading to a prewetted (also called precursor) layer
in nominally dry regions. We remark that in the absence
of other forces, such as gravity, the liquid-solid interaction
force is the only possible driving mechanism of dewetting.
Moreover, we notice that the dynamics of dewetting pro-
cesses can be divided in two regimes: the initial stage of
the evolution, characterized by amplitudes in the interface
thickness that are small relative to the initial height of the
film and whose growth is analytically predicted by a Lin-
ear Stability Analysis (LSA); and the developed phase of
the interface evolution, characterized by amplitudes that
are no longer small and therefore cannot be described in
terms of linear asymptotic approximations and require a
fully nonlinear dynamic description.

In this work, we outline the theoretical and numerical
study concerning the interfacial flow of two-dimensional
thin viscoelastic films under the effects of both the gravi-
tational force and the disjoining pressure. We derive here
a novel governing equation describing the evolution of the
interface of thin viscoelastic films lying on planes that can
have an arbitrary inclination with respect to the base, ob-
tained as a long-wave approximation of the Navier-Stokes
equations, with the Jeffreys model for viscoelastic stresses.
For the particular cases of horizontal or inverted planes,
the LSA is performed to assess the effects of the different
physical parameters involved on the dynamics governing

the linear regime, and compare theoretical predictions of
the early stage of the dynamics, with the numerical results
obtained. The competing effects of the physical parame-
ters involved on the length and time scales of instabilities
are analyzed, in the linear and nonlinear regimes.

We find that, in the linear regime, the critical and most
unstable wavenumbers are neither dependent on the vis-
coelastic parameters, nor on the slip length, but only on
the interactions induced by the disjoining pressure and
the gravitational force. Moreover, we provide numerical
simulations of the evolution of the interface in the nonlin-
ear regime, for the particular case of an inverted plane. In
this regime, we find that the gravitational force and the
disjoining pressure affect the equilibrium configuration at-
tained by the dewetted films, by favoring the formation of
satellite droplets, and by forming a hump in the nominally
dry central region, destabilizing the precursor film. More-
over, we notice that the slippage with the solid substrate
suppresses the secondary droplets, observed in regimes of
microgravity.

We emphasize that the Jeffreys model (together with
the Maxwell model [19] and the Newton model for viscous
fluids [6]) is appropriate to describe liquids in which dis-
placement gradients are small [6,34]. More broadly, gener-
alizations of the Jeffreys model, that include nonlinear ob-
jective stress rates (in place of the simple time derivative of
the stress) to describe the advection and rotation of the
stress tensor with the flow, are considered; for instance,
the Oldroyd-B model [6] that uses an upper-convected
time derivative, or the corotational Jeffreys model [35]
that involves the Jaumann derivative. However, in the
context of the present work, and similarly in studies con-
cerning thin viscoelastic dewetting films in the absence of
gravity (see, e.g., [13, 16, 17]), the liquid films are consid-
ered to be initially at rest and undergo a spontaneous, rel-
atively slow, dewetting flow. In [16,17], it has been found
that viscoelastic dewetting films exhibit a slow, viscous
response, especially in the early times and final stages of
evolution. As Tomar et al. have discussed in [17], results
obtained from nonlinear simulations that use linear vis-
coelastic models without the upper-convected terms are
expected to be qualitatively accurate. In particular, this
applies to the regions of the decay of the capillary ridge
(as also discussed by Rauscher et al. in [13]), and in the
central hole where secondary length scales of instabilities
form and slowly coalesce (that is the region where most
of the attention is focused on in the present work). Al-
though limited, both the Maxwell and the Jeffreys models
have been applied to and proven to be useful for the anal-
ysis of a broad range of materials (see, e.g., [36]), and
analyses using these models have served as baselines for
studies that have considered their expansions including
nonlinearities.

The remainder of this paper is organized as follows. In
sect. 2, we outline the mathematical modeling, whose de-
tailed description and thin-film approximation are given
in the appendix. In sect. 3, we outline the numerical meth-
ods employed. In sect. 4, we discuss our numerical results
for the linear and nonlinear regimes, and finally, in sect. 5,
we draw our conclusions.
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2 Mathematical formulation

We present here the governing equation (whose detailed
derivation is shown in the appendix) for a viscoelastic fluid
lying on a plane, inclined at an angle α with respect to the
positive x-axis, and subjected to the disjoining pressure
and weak slip regime with the substrate. We consider an
incompressible liquid, with constant density ρ, surrounded
by a gas phase assumed to be inviscid, dynamically pas-
sive, and of constant pressure. The equations of conserva-
tion of momentum and mass, respectively, for the liquid
phase are

ρ (∂tv + v · ∇v) = −∇(p + Π) + ∇ · σ + Fb, (1a)

∇ · v = 0, (1b)

where v = (v1(x, y, t), v2(x, y, t)) is the velocity field in
the Cartesian xy-plane (as per convention, the x-axis is
parallel to the plane, and the y-axis is perpendicular to
the plane), and ∇ = (∂x, ∂y); σ is the (symmetric) stress
tensor, p is the pressure, Π = Π(h) is the disjoining
pressure due to liquid-solid interaction forces (we note
that ∇Π = 0 except at the liquid-gas interface), and
Fb = (ρg sin α,−ρg cos α), where, the gravitational ac-
celeration constant is positive (g > 0) for the reference
system depicted in fig. 1.

To model the stresses, we use a generalization of the
Maxwell model [19] for viscoelastic liquids: the Jeffreys
model [4]. The Jeffreys model, together with the Maxwell
model, belongs to a class of linear viscoelastic differen-
tial models. Viscoelastic materials can be described as
mechanical systems where material points are connected
by dashpots (representing energy dissipating devices),
springs (representing energy storing devices), or any com-
bination of the two devices. For a Maxwell material [19],
the system comprises a spring and a dashpot in series, and
for a Kelvin-Voigt material [37], a spring and a dashpot
in parallel. For a Jeffreys fluid, the system is composed of
another dashpot connected in parallel to a Maxwell sys-
tem [37–39] (see fig. 2).

The constitutive law for the Jeffreys model is given by

σ + λ1∂tσ = 2η(ǫ̇ + λ2∂tǫ̇), (2)

where ǫ̇ is the strain rate tensor, e.g. ǫ̇ij = (∂vj/∂xi +
∂vi/∂xj)/2, with i, j = {1, 2}, and η is the dynamic vis-
cosity coefficient. In this model, the response to the defor-
mation of a viscoelastic liquid is characterized by two time
constants, λ1 and λ2, the relaxation time and the retar-
dation time, respectively, related by λ2 = λ1ηs/(ηs + ηp).
Here, ηs and ηp are the viscosity coefficients of the Newto-
nian solvent and the polymeric solute, respectively, such
that η = ηs + ηp (see fig. 2). Noting that the ratio
ηs/(ηs + ηp) ≤ 1, we have that λ1 ≥ λ2 [6]. We observe
that the Maxwell model [19] is recovered from the Jef-
freys model when λ2 = 0, and the Newtonian constitutive
relation for viscous fluids [6] is obtained when λ1 = λ2.
We emphasize that it is believed to be quite restrictive
to expect a polymeric liquid of a broad molecular weight
distribution to be characterized in terms of a single relax-
ation time [37]. In fact, the relaxation time occurring in

Gas

Liquid

Fig. 1. Schematic of a fluid interface and boundary conditions
at the interface of the fluid and the solid substrate, for α = π

(inverted plane).

Fig. 2. Jeffreys model represented as a mechanical system,
where G represents the shear modulus, and ηs and ηp the vis-
cosity coefficients of the Newtonian solvent and the polymeric
solute, respectively.

the Jeffreys (and Maxwell) constitutive relation is inter-
preted as the longest relaxation time exhibited by a poly-
meric liquid [17]. In the present work, the Jeffreys model
is preferred over the simpler Maxwell model to be able to
describe features such as the retardation due to the New-
tonian solvent in the solution. In sect. 4, we will analyze
the influence of the relaxation and retardation time con-
stants, as well as the other physical parameters, on the
dynamics and morphologies of the dewetting films.

The system of eqs. (1) is subjected to boundary con-
ditions at the free surface, represented parametrically by
the function f(x, y, t) = y − h(x, t) = 0, and boundary
conditions at the solid substrate (y = 0). At the latter,
we apply the non-penetration and the Navier slip bound-
ary conditions, with the slip length coefficient denoted by
b ≥ 0. As also discussed in [40, 41], long-wave models for
thin films can be derived in different slip regimes. In this
work, we will focus on the weak slip regime.

The stress balance at the interface is given by

(σ − (p + Π)I) · n = γκn, (3)

where I is the identity matrix. In the absence of motion,
this condition describes the jump in the pressure across
the interface with outward unit normal n (whose definition
is given in the appendix), and a local curvature, κ = −∇·
n, due to the surface tension γ. The form of the disjoining
pressure, Π = Π(h), used in this work is given by the
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following expression:

Π =
γ(1 − cos θe)

Mh⋆

[(

h⋆

h

)m1

−
(

h⋆

h

)m2
]

, (4)

where h⋆ represents the equilibrium film thickness in-
duced by the van der Waals attraction/repulsion inter-
action force, θe is the equilibrium contact angle, formed
between the fluid interface y = h(x, t) and the solid sub-
strate, and M = (m1 − m2)/[(m2 − 1)(m1 − 1)], where
m1 and m2 are constants such that m1 > m2 > 1. In this
work, we choose m1 = 3 and m2 = 2, as also widely used
in the literature, for instance by the authors in [42–44],
but other values can be modeled as verified in [45].

The interested reader can find the derivation of the
governing equation for the evolving interface h(x, t) in the
appendix, where all quantities and scalings are defined. We
report here its final dimensionless form in which we use
the compact notation ∂(·)/∂x = (·)x, and ∂(·)/∂t = (·)t,
(similarly for higher-order spatial or temporal derivatives
later on in the text)

(1 + λ2∂t)ht + (λ2 − λ1)

[(

h2

2
Q − hR

)

ht

]

x

+

[

(1 + λ1∂t)
h3

3
(−px + S)

+(1 + λ2∂t)bh
2 (−px + S)

]

x

= 0, (5)

in which we use the dimensionless form of the pressure,
p, given in the appendix, and where Q and R satisfy the
equations

(1 + λ2∂t)Q = px − S, (6a)

(1 + λ2∂t)R = h (px − S) . (6b)

In eqs. (5) and (6), we have used

S =
ρgL2ε2

V η
sin α, (7a)

C =
ρgL2ε3

V η
cos α. (7b)

The reader can find the meaning of the scaling factors L,
Γ , V , together with the definition of the small parameter
ε, in the appendix. Let B = ρgL2/Γ ≡ ρgL2ε3/V η =
O(1) (unless specified differently) be the Bond number,
a dimensionless quantity representing the importance of
gravity relative to surface tension. We note that for the
particular cases in which the plane has a small inclination
α with the base, i.e., for α = εα∗ or α = π + εα∗, the
parameters in eqs. (7) can be expressed as S ≈ Bα∗ and
C ≈ B, respectively.

We notice that for the case in which λ1 = λ2 (that
corresponds to a Newtonian fluid), eqs. (5) and (6) reduce
to the governing equation for thin viscous films flowing
down inclined planes, as outlined in [25,46]. Moreover, we
remark that, for the particular cases for which we present

our results in this work (i.e., for α = 0, π), the term S can-
cels. However, it is retained from now on, to allow for easy
extensions of the present study in future research endeav-
ors, that may consider arbitrary values of the inclination
angle α.

3 Numerical methods

To discretize eq. (5), we isolate the time derivatives from
the spatial ones, so that we can apply an iterative scheme
to find the approximation to the solution at the new time
step. We do so by differentiating the spatial derivatives
and, assuming the partial derivatives of h(x, t) to be con-
tinuous, obtaining

λ2htt +

[(

h3

3
+ bh2

)

(−px + S)

]

x

+

{

1 + (λ2 − λ1)

[(

h2

2
Q − hR

)

x

]}

ht

+ (hx)t (λ2 − λ1)

(

h2

2
Q − hR

)

+λ1∂t

[(

h3

3
(−px + S)

)

x

]

+λ2∂t

[(

bh2 (−px + S)
)

x

]

= 0. (8)

The spatial domain [0, Λ] is discretized by a staggered
structured grid, in which the first- and third-order deriva-
tives are defined at the cell-centers, and the second- and
fourth-order ones at the grid points. Following the natu-
ral order from left to right, adjacent vertices are associ-
ated to the indices i− 1, i, i + 1, respectively. Thus, we let
xi = x0+iΔx, i = 1, 2, . . . , N (where N = Λ/Δx, and Δx
is the fixed grid size), so that the endpoints of the physical
domain, 0 and Λ, correspond to the x1− Δx

2 and xN + Δx
2

cell-centers, respectively. Similarly, we discretize the time
domain and denote by hn

i the approximation to the solu-
tion at the point (xi, nΔt), where n = 0, 1, . . . indicates
the number of time steps, and Δt is the temporal step size,
which can be chosen adaptively to speed up the marching
algorithm when the solution does not exhibit fast tempo-
ral variations (see [16, 42, 47] for a detailed description).
In addition to the numerical formulation provided in [16],
the discrete versions of eqs. (6a) and (6b) are given by

Qn+1
i − Qn

i

Δt
= −Qn

i

λ2
− 1

λ2
(−px + S)

n
i , (9a)

Rn+1
i − Rn

i

Δt
= −Rn

i

λ2
− 1

λ2
hn

i (−px + S)
n
i , (9b)

that we solve using the forward Euler method with initial
conditions Q0

i = 0 and R0
i = 0, respectively. The nonlin-

ear terms h2 and h3 are computed at the cell-centers, as
outlined in [16,25,48].

We solve eqs. (8) and (9) for the particular case in
which α = π (according to the setup depicted in fig. 1),
and at the endpoints of the domain, we impose the hx =
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hxxx = 0 boundary conditions, that reflect the symmetry
of the problem. The condition hx = 0 gives the value of
h at the two ghost points x0 and xN+1 outside the phys-
ical domain, i.e. h0 = h1 and hN+1 = hN ; the condition
hxxx = 0 specifies the two ghost points x−1 and xN+2, i.e.

h−1 = h2 and hN+2 = hN−1 (consistent with [25]). More-
over, similarly to the numerical study in [16], we apply
a mixed implicit/explicit finite difference formulation to
discretize the nonlinear equation (8). We remark that, be-
cause of the symmetry condition, we can reduce the com-
putational domain to half the physical domain. However,
in the results that follow, we show the numerical solutions
on the entire domain for ease of visualization.

After Newton’s linearization, we obtain a system of
equations of the form Aξ = B, that we numerically solve
for the correction term, ξ, using a direct method [46]. The
initial condition given for h(x, 0) is a known function that
describes the initial perturbation of the fluid interface (see
sect. 4), and the initial velocity is ht(x, 0) = 0, describing
the fact that the considered films are initially at rest.

4 Results and discussion

4.1 Linear Stability Analysis (LSA)

In this section, we report our results regarding the special
case of an inverted plane, for which α = π, as depicted
in fig. 1. We perturb a flat film of initial thickness h0

by an oscillatory Fourier mode of amplitude δh0 (such
that δ ≪ 1), with wavenumber k, i.e., we let h(x, t) =
h0 + δh0e

ikx+ωt. Performing the LSA on eqs. (5) and (6)
leads to the following dispersion relation:

λ2ω
2 +

[

1 + (KC + iSk)

(

λ1
h3

0

3
+ λ2bh

2
0

)]

ω

+(KC + iSk)

(

h3
0

3
+ bh2

0

)

= 0, (10)

where we have defined

KC := k4 − k2(Π ′(h0) − C). (11)

We consider the real part of the two roots of the dispersion
relation (10), namely Re{ω1} and Re{ω2}. One is always
negative (indicating stable modes), say Re{ω2}, and the
other one has varying sign (describing potentially unstable
ones), say Re{ω1}. We find

Re{ω1} =
−

[

1 + KC

(

λ1
h3

0

3 + λ2bh
2
0

)]

2λ2

+
Re{√Δω}

2λ2
, (12)

where we have defined

Δω :=

[

1 + (KC + iSk)

(

λ1
h3

0

3
+ λ2bh

2
0

)]2

−4λ2(KC + iSk)

(

h3
0

3
+ bh2

0

)

. (13)

The critical wavenumber, for which Re{ω1} = 0, satisfies
the relationship k2

c = Π ′(h0) − C. Hence, through this
relationship, we note that the gravitational term affects
the length scales of instability. We also remark that, for the
parameters considered in this work, Π ′(h0) > 0 and −C >
0. Moreover, we notice that the wavenumber of maximum
growth, as for the case without gravity [13, 16], satisfies

the relationship km = kc/
√

2. In addition, consistent with
the previous studies without gravity [16,17], we find that
the maximum growth rate, ωm = ω(km), is an increasing
function of λ1 and b, while a decreasing function of λ2.

4.2 Dewetting of thin viscoelastic films on inverted
substrates

We outline here the numerical results for dewetting thin
films under the influence of the disjoining pressure and the
gravitational force. As anticipated in sect. 4.1, we consider
the particular case in which α = π, that is, for films that
hang on an inverted plane. As described in sect. 4.1, we
perturb the initially flat fluid interface of thickness h0,
with a perturbation characterized by the wavenumber k =
km and δ = 0.01, i.e., h0(x, 0) = h0+δh0 cos(xkm), and we
choose the domain size, Λ, to be equal to the wavelength
of maximum growth, that is, Λm = 2π/km. Initially, we
consider dewetting films in a regime of no-slip with the
solid substrate, and subsequently, we analyze the effects
of the substrate slippage on the dewetting dynamics and
morphologies. For all the results that follow, we use a fixed
grid size of Δx = 0.01; however, all results have been
verified to be mesh independent.

To isolate the effects of the gravitational force, we start
by analyzing the behavior of dewetting films for the partic-
ular case of the absence of the disjoining pressure with the
substrate. In fig. 3, we present the comparison of the com-
puted growth rates, corresponding to different wavenum-
bers (red dots), with the theoretical values predicted by
the dispersion relation, given by eq. (12), for the following
parameters:

h0 = 1, h⋆ = 0.01, θe = π/4, B = 1, b = 0. (14)

In fig. 3, in particular, we show the results for a Newto-
nian film, i.e., with λ1 = λ2 = 0, for α = π (blue dotted
line) or α = 0 (blue solid line), and a viscoelastic film
with λ1 = 5 and λ2 = 0.01, and α = π (blue dashed
line). We remark that in this case, the only driving force
for the instability is gravity. As expected, in the absence
of the attraction/repulsion force with the substrate, and
for α = 0, there is no instability, and the growth rate is
negative for all wavenumbers. To compare with the ana-
lytical values, we measure the computed growth rates in
the linear regime in which the amplitude of the interface
function grows exponentially.

In what follows, we will show numerical results for films
dewetting an inverted substrate (i.e., for α = π), with the
same fixed initial and equilibrium thicknesses, equilibrium
contact angle, and slip coefficient as shown in (14), unless
specified differently, and will vary the different physical
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Fig. 3. Comparison of the computed growth rates, correspond-
ing to different wavenumbers (red dots), with the prediction of
the LSA, for the parameters given in (14), and, in particular,
for a Newtonian film, i.e., with λ1 = λ2 = 0, and α = π (blue
dotted line) or α = 0 (blue solid line); and for a viscoelastic
film with λ1 = 5 and λ2 = 0.01, and α = π (blue dashed line).

parameters to investigate their isolated effects. In fig. 4,
we investigate the dynamics of thin viscoelastic films, in
the absence of the disjoining pressure. We compare the
evolution of a Newtonian film, with λ1 = λ2 = 0 (blue
solid curve with circles), with the one of viscoelastic films,
with λ2 = 0.01 and λ1 = 1 (cyan dotted curve with tri-
angles), λ1 = 5 (green dashed curve with squares), and
λ1 = 10 (red solid curve with crosses). Figure 4(a) shows
the results at time t = 20, and fig. 4(b) at time t = 104.
Consistent with the results obtained in [33] (and references
therein), we observe that the viscoelastic film with the
highest relaxation time exhibits the fastest dynamics in
the development of the RT instability. In fact, in fig. 4(a)
the interface of the film with λ1 = 10 has significantly de-
veloped, while the other films are still in the initial phase
of small interfacial amplitude. Eventually, all viscoelastic
films reach the near-equilibrium configuration, depicted in
fig. 4(b). A similar behavior was observed by the authors
in [16] for the case of regular dewetting processes in the ab-
sence of gravity, for which the instability was solely driven
by the disjoining attraction/repulsion force with the solid
substrate, and for which elasticity was found to facilitate
the dynamics of the dewetting process.

Analogously to the results obtained in [16], we have
confirmed here that λ2 does not significantly influence
the dynamics or the attained morphologies. To investigate
this, in fig. 5, we plot the evolution of different viscoelastic
films with the same parameters as in (14), in the absence
of the disjoining pressure, with λ1 = 1 and λ2 = 0.01 (blue
solid curve with circles), λ2 = 0.1 (cyan dotted curve with
triangles), λ2 = 0.5 (green dashed curve with squares),
and λ2 = 1 (red solid curve with crosses), respectively. We
can see that both in fig. 5(a), at time t = 1.47 × 102, and
in fig. 5(b), at time t = 104, the profiles of the different
film interfaces completely overlap. Therefore, from now
on, to investigate the material behavior of the dewetting
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Fig. 4. Evolution of different viscoelastic films with the same
parameters as in (14), in the absence of the disjoining pressure,
and: λ1 = λ2 = 0 (blue solid curve with circles), λ2 = 0.01
and λ1 = 1 (cyan dotted curve with triangles), λ1 = 5 (green
dashed curve with squares), and λ1 = 10 (red solid curve with
crosses), respectively; in (a), at time t = 20, and in (b), at time
t = 104.

viscoelastic films, we will focus our attention on varying
the relaxation time, rather than the retardation time.

As described earlier, the disjoining pressure induces an
equilibrium (precursor) layer on the substrate. Hence, in
the absence of this interaction with the substrate, we ex-
pect the thickness of the dewetting films to reach zero as
t → ∞. In fig. 6, we plot the temporal evolution (in log-
arithmic scales) of the minimum thickness of viscoelastic
films in the absence of the disjoining pressure, with the
same parameters as in (14) and λ2 = 0.01, λ1 = 1 (blue
solid curve), λ1 = 2 (cyan dash-dotted curve), λ1 = 5
(green dashed curve), and λ1 = 10 (red dotted curve), re-
spectively. We emphasize that, in fig. 6, we show the late
times of the evolution with t ∈ [104, 107], for which expo-
nential growth of the interface amplitude is not expected.
The slight variations in the behavior of the different vis-
coelastic films are noticeable only in the (relatively) early
times of the evolution shown in the inset of fig. 6, for which
exponential growth of the interface amplitude is observed.
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Fig. 5. Evolution of different viscoelastic films with the same
parameters as in (14), in the absence of the disjoining pressure,
with λ1 = 1 and λ2 = 0.01 (blue solid curve with circles),
λ2 = 0.1 (cyan dotted curve with triangles), λ2 = 0.5 (green
dashed curve with squares), and λ2 = 1 (red solid curve with
crosses), respectively; in (a), at time t = 1.47×102, and in (b),
at time t = 104.

Moreover, our results suggest a power law scaling, that is,
hmin ∝ ts, where s is found to be ∼ −1/2, for the data
shown in fig. 6.

Commonly, only the separate effects of the gravita-
tional force or the disjoining pressure are analyzed. How-
ever, for liquid films of micro scale, the crossover region,
where the effects of the two forces are comparable, can
be considered. Hence, in fig. 7, we investigate the compet-
ing effects of the disjoining pressure and the gravitational
force on the dynamics of dewetting films on an inverted
plane. We compare the evolutions of two dewetting films:
a Newtonian liquid, with λ1 = λ2 = 0 (blue dashed curve)
and a viscoelastic one, with λ1 = 10, λ2 = 0.01 (red solid
curve), in fig. 7(a) at time t = 5.25× 102, and in fig. 7(b)
at time t = 104. Both films form a large droplet in the
center of the dewetting region, that is not present when
disjoining pressure is not considered (cf. fig. 4(b) in which
only a small hump appears in the hole region). Moreover,
in fig. 7(a), we notice that the viscoelastic film exhibits

10
5

10
6

10
7

10
-3

10
-2

1 1.05 1.1

10
4

7.1

7.2

7.3

7.4

7.5
10

-3

Fig. 6. Temporal evolution, in logarithmic scales, of the min-
imum thickness of viscoelastic films with the same parameters
as in (14) and λ2 = 0.01, λ1 = 1 (blue solid curve), λ1 = 2
(cyan dash-dotted curve), λ1 = 5 (green dashed curve), and
λ1 = 10 (red dotted curve), respectively. The inset shows a
magnification for the early times of the evolution, for which
hmin exhibits an exponential decay. When the disjoining pres-
sure is zero, the thickness reaches zero for times that are long
compared to the ones considered in this work.

two small secondary humps in the interface on the sides
of the central droplet. Eventually, in fig. 7(b), the small
humps disappear, and the viscoelastic film attains a near-
equilibrium configuration with a central droplet that is
slightly larger than one of the Newtonian film. We em-
phasize that figs. 4 and 7 include films with the same vis-
coelastic parameters, i.e., λ1 = λ2 = 0 (blue curves) and
λ1 = 10, λ2 = 0.01 (red curves), and only differ in the ab-
sence or presence of the disjoining pressure, respectively.
As discussed in sect. 4.1, both the disjoining pressure and
the gravitational term affect the wavenumbers (and there-
fore the wavelengths) of maximum instability. However,
for the cases presented in figs. 4 and 7, the wavelength
of maximum growth is not significantly different. For the
former, Λm = 8.89, and, for the latter, Λm = 8.83.

To demonstrate that the morphologies observed so far
are independent of the particular initial perturbation and
domain size chosen (i.e., for the fastest growing wave-
length, Λm = 2π/km), we analyze a dewetting viscoelastic
film, with the same parameters as in (14), and, in par-
ticular, λ1 = 5, λ2 = 0.01, on a computational domain
Λ′ = 5 × Λm. The film is initially perturbed by different
wavelengths, Λi = 2Λm/i, with i = 1, 2, . . . , 50, such that

h0(x, 0) = h0 + δh0

50
∑

i=1

Ai cos(2πx/Λi), (15)

where the amplitudes Ai are randomly chosen in the range
[−1, 1]. In fig. 8, we plot the film evolution, at three differ-
ent times: t = 0 (black solid curve), t = 102 (blue dashed
curve), and t = 104 (red dotted curve). We can see that, at
t = 104, a pattern is formed by satellite droplets that are
separated by an average distance d̄ ≈ 8.80, which is close
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Fig. 7. Evolution in the presence of the disjoining pressure,
for films with the same parameters as in (14), and λ1 = λ2 = 0
(blue dashed curve) compared to a viscoelastic film λ1 = 10,
λ2 = 0.01 (red solid curve), in (a), at time t = 5.25× 102, and
in (b), at time t = 104.

to Λm = 8.83, for this set of parameters. Moreover, we no-
tice that, as in the case in which a single wavelength was
considered, the droplets appear to reach a steady config-
uration, during the late times of observation. We remark
that, for the physical parameters chosen, the growth rate
of the fastest growing wavelength, ωm ≈ 0.14. Therefore,
the largest time of evolution plotted in fig. 8 corresponds
to t = 104 ≈ 103ω−1

m , that is much longer than the breakup
time, comparable to ω−1

m [49]. A further analysis of the
evolution of the satellite droplets is provided in sect. 4.3.

Next, we investigate the effect of reducing the Bond
number, B, on the morphologies of the dewetted films.
While B could be modified in a number of different ways,
for the present purposes we may consider that variations
of B are due to change of g, e.g., we could consider thin
films under microgravity conditions. In fig. 9, we plot the
evolution of dewetting for a viscoelastic film with λ1 = 10
and λ2 = 0.01, in the presence of the disjoining pressure,
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Fig. 8. Evolution of a viscoelastic film, with the same param-
eters as in (14), and, in particular, λ1 = 5, λ2 = 0.01, initially
perturbed by different wavelengths with random amplitude.

for B = 0.1 (top row), and B = 0.01 (bottom row). In
the results shown so far, we have considered the no-slip
boundary condition with the solid substrate (given by b =
0). We now add to our analysis the effect of slippage, by
varying, in fig. 9, the slip coefficient from b = 0 (first
column) to b = 0.1 (second column). In fig. 9(a), for B =
0.1 and b = 0, at time t = 104, we notice three small
secondary droplets in the interface on each side of the main
central drop, that eventually, at time t = 106, disappear.
In fig. 9(b), for B = 0.1 and b = 0.1, we can see that,
at time t = 104 only one central drop is present. In fact,
the small droplets observed in fig. 9(a) are flattened by
slippage. However, in the steady configuration attained at
time t = 106, the slip with the substrate causes also the
central drop to be completely suppressed. We continue our
investigation of the microgravity conditions, by further
reducing the Bond number. In fig. 9(c), for B = 0.01 and
b = 0, at time t = 1.72× 105, we can see the formation of
multiple secondary droplets, that mostly coalesce in the
near-equilibrium configuration, attained at time t = 106.
In fact, we can see that only two satellite droplets remain
in the final configuration visualized. Finally, in fig. 9(d),
we plot the dewetting film for B = 0.01, b = 0.1. By
comparing the behavior of this viscoelastic film with the
one shown in fig. 9(c), that considers the same times of
evolution (t = 1.72 × 105 and t = 106), we can see how
the slippage with the substrate suppresses the satellite
droplets. Moreover, we notice how the near-equilibrium
configuration displayed in fig. 9(d), at time t = 106, is the
same as the one attained at time t = 104. We remark that,
for the simulations shown in fig. 9, B and b are the only
two parameters varied, and all other parameters in (14)
are fixed.

4.3 Droplets analysis

The emergence and evolution of secondary droplets in
thin dewetting films has been of interest in the litera-
ture (see, e.g., [16, 42, 49]). The secondary length scales



Eur. Phys. J. E (2019) 42: 12 Page 9 of 14

510152025

0

0.5

1

1.5

2

2.5

3

(a)

510152025

0

1

2

3

(b)

102030405060

0

1

2

3

4

(c)

102030405060

0

1

2

3

4

(d)

Fig. 9. Evolution in the presence of the disjoining pressure, for a viscoelastic film with λ1 = 10 and λ2 = 0.01, for B = 0.1 (top
row), B = 0.01 (bottom row), b = 0 (first column), and b = 0.1 (second column); in (a) and (b) for t = 104 (blue solid curve)
and t = 106 (red dotted curve), and in (c) and (d) for t = 1.72 × 105 (blue solid curve) and t = 106 (red dotted curve). For
these simulations, except for B and b that have varied, we have kept the fixed parameters presented in (14).

of instabilities, that are observed in the nominally dry re-
gion between the two separating rims, are induced by the
interaction force with the solid substrate (as deduced by
comparing the viscoelastic films with same material pa-
rameters in figs. 4 and 7). Moreover, at parity of param-
eters related to both viscoelasticity and disjoining pres-
sure, these secondary droplets are found to be favored by
regimes of microgravity and suppressed by higher slippage
with the substrate (as shown in fig. 9). We present here
an analysis of the dependence of the satellite droplets on
the different physical parameters involved. We emphasize
that, for the parameter studies that follow, we vary one
of the physical quantities at a time and keep all others at
their default value, given by (14).

In fig. 10, we plot the evolution of the number of satel-
lite droplets, for films with λ1 = λ2 = 0 (blue circles),
λ2 = 0.01 and λ1 = 1 (yellow triangles), λ1 = 5 (green
crosses), and λ1 = 10 (red diamonds), respectively, in a
semilogarithmic scale (linear scale for the y-axis and loga-
rithmic scale for the x-axis). We can see that viscoelastic

films exhibit a higher number of droplets compared to the
Newtonian one, and that these secondary instabilities re-
main longer for higher values of the relaxation time. Even-
tually these droplets coalesce and reach a steady state (for
the time of observation of the current numerical experi-
ments, t ≫ ω−1

m ).
In fig. 11, we plot the number of droplets in time, for

the same regimes considered in fig. 9, in a semilogarithmic
scale. We can see how in microgravity conditions, a higher
number of droplets is formed, and how, for higher values
of slippage with the substrate, these secondary drops are
suppressed.

We proceed by analyzing the effects of the equilib-
rium (precursor) thickness, h⋆, induced by the disjoining
pressure. In fig. 12, we plot the evolution of the number
of droplets for a Newtonian film with different equilib-
rium thicknesses: h⋆ = 0.005 (blue circles), 0.01 (yellow
triangles), 0.05 (green crosses), 0.1 (red diamonds), in a
semilogarithmic scale, for a Newtonian film in fig. 12(a),
and a viscoelastic one with λ1 = 5 and λ2 = 0.01,
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Fig. 10. Evolution of the number of droplets, in a semiloga-
rithmic scale, for different films in the presence of the disjoining
pressure, with the same parameters as in (14) and λ1 = λ2 = 0
(blue circles), λ2 = 0.01 and λ1 = 1 (yellow triangles), λ1 = 5
(green crosses), and λ1 = 10 (red diamonds).
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Fig. 11. Evolution of the number of droplets, in a semiloga-
rithmic scale, for different films with the same parameters as
in fig. 9.

in fig. 12(b). We can see how, in both cases, a higher
equilibrium thickness suppresses the formation of satellite
droplets and favors their coalescence.

The results shown so far, in sect. 4.3, concerned dewet-
ting films with a computational domain equal to the wave-
length of maximum growth, i.e., Λ = Λm. Finally, we
present a quantitative analysis of the evolution of droplets,
for the cases in which the films are initially perturbed by
a number of wavelengths with random amplitude, as de-
scribed in eq. (15), for different computational domains.
In fig. 13, we consider a dewetting viscoelastic film, with
λ1 = 5, λ2 = 0.01, for Λ′ = 5 × Λm (blue circles),
Λ′′ = 10×Λm (yellow triangles), and Λ′′′ = 30×Λm (green
crosses). In fig. 13(a), we plot the evolution of the number
of droplets, and, in fig. 13(b), their mean distance, both
in a semilogarithmic scale. We can see that the maximum
number of secondary droplets, Nmax, varies approximately
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Fig. 12. Evolution of the number of droplets, in a semiloga-
rithmic scale, for different equilibrium thicknesses: h⋆ = 0.005
(blue circles), 0.01 (yellow triangles), 0.05 (green crosses), 0.1
(red diamonds); for a Newtonian film, in (a), and a viscoelastic
one, with λ1 = 5 and λ2 = 0.01, in (b).

linearly with the computational domain. In fact, we can
compare the results shown in fig. 13(a), with the ones for
the same viscoelastic film for which the computational do-
main is equal to the single wavelength of maximum growth
rate, Λ = Λm = 8.83 (for this set of parameters), depicted
in fig. 10. We notice that, for Λ = Λm, the maximum num-
ber of droplets observed is Nmax = 3; for Λ′ = 5 × Λ′

m,
Nmax = 13, for Λ′′ = 10 × Λm, Nmax = 36, and, for
Λ′′′ = 30 × Λm, Nmax = 98. As discussed in sect. 4.2, we
notice that, for all the different computational domains,
the number of droplets plateaus to a constant value for
large times, i.e., t ≫ ω−1

m , indicating that the coalescence
of droplets reaches a near-equilibrium state. We empha-
size that for times longer than the ones considered in this
work, i.e., for t → ∞, the number of droplets slowly decays
to zero (see Glasner and Witelski [50]). In our results, the
reached minimum number of droplets, Nmin, also appears
to depend linearly on the domain size. In fact, for Λ = Λm,
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Fig. 13. Droplets evolution, in a semilogarithmic scale, for
a viscoelastic film with the same parameters as in (14) and
λ1 = 5 and λ2 = 0.01, on different computational domains:
Λ′ = 5×Λm (blue circles), Λ′′ = 10×Λm (yellow triangles), and
Λ′′′ = 30 × Λm (green crosses); in (a), the number of droplets
in time; in (b), their mean distance. For these simulations, an
initial perturbation with different wavelengths with random
amplitude, as in (15), is considered.

Nmin = 1, for Λ′ = 5×Λ′
m, Nmin = 5, for Λ′′ = 10×Λm,

Nmin = 10, and for Λ′′′ = 30×Λm, Nmin = 26. Moreover,
the mean distance between the droplets is comparable to
Λm = 8.83 (as displayed in fig. 13(b)), except for the Λ′′′

case, in which the mean distance, d̄ ≈ 10.3.

5 Conclusions

We have considered a novel long-wave governing equation
for the interfacial flow of two-dimensional thin viscoelastic
films dewetting substrates (with a zero or weak slippage)
that can be inclined with respect to the base, under the
effects of the gravitational force and the disjoining pres-
sure, in which the stresses are described by the Jeffreys

model. We have carried out the linear stability analysis,
that shows that the viscoelastic parameters and the slip-
page coefficient do not influence either the wavenumber
corresponding to the maximum growth rate or the critical
one. However, the length scales of instabilities are found
to be affected by the gravitational contribution. Our nu-
merical results of the computed growth rates in the linear
regime are shown to be in agreement with the theoretical
prediction given by the linear stability analysis.

We have provided numerical simulations of thin vis-
coelastic dewetting films in the particular case in which
they hang on inverted planes (i.e., for α = π). To isolate
the effects of the gravitational force, we have begun our
investigation by analyzing dewetting films in the absence
of the disjoining pressure. The results for the nonlinear
regime show that, consistent with previous results that
did not consider gravity effects [16,17], a higher relaxation
time speeds up the dewetting dynamics.

Furthermore, we have investigated the competing ef-
fects of the gravitational and the attraction/repulsion
forces, by considering the evolution of viscoelastic films,
dewetting an inverted substrate, in the presence of the
disjoining pressure. We have found that, at parity of grav-
itational force (i.e., for the same Bond number), the dis-
joining pressure induces the formation of satellite droplets.
These secondary instabilities, favored by small values of
the Bond number, are suppressed when a higher slippage
with the substrate is considered. Moreover, we have an-
alyzed the influence of the different physical parameters
on the formation and coalescence of the satellite droplets.
We have found that a higher value of the equilibrium film
thickness suppresses the formation of the secondary insta-
bilities.

In addition, we have verified that our results are
independent of the particular initial perturbation and
domain size chosen. In fact, by considering dewetting
films on a computational domain much longer than the
fastest growing wavelength, and by perturbing them with
different wavelengths possessing random amplitudes, we
have demonstrated that the mean distance between the
droplets is accurately described by the wavelength of
fastest growth. Finally, we have observed that the number
of satellite droplets and their distance scale approximately
linearly with the domain size.

Future work shall consider the extension of this nu-
merical investigation in which inclined planes of arbitrary
angle α are considered. In that case, boundary conditions
for which a constant influx is maintained at the inlet, as
in [46], would have to be included. Moreover, for arbi-
trary values of α, the form of the perturbation employed
for the linear stability analysis should present a wave-like
mode [25,46], rather than an oscillatory one. Furthermore,
extensions of this investigation to three spatial dimensions
would allow one to describe and capture fingering insta-
bilities, known to arise in the direction transversal to the
flow [25,51].

The authors would like to thank the referees for the very thor-
ough and detailed revision provided.
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Appendix A. Derivation

We define the outward unit normal, n, as

n =
1

((hx)2 + 1)1/2
(−hx, 1) . (A.1)

The kinematic boundary condition is given by Df/Dt =
ft+v·∇f = 0 (where we have used the material derivative
D(·)/Dt), and in which substituting f(x, y, t) = y−h(x, t)
gives

ht(x, t) = − ∂

∂x

∫ h(x,t)

0

v1(x, y)dy. (A.2)

As anticipated, the boundary conditions at the solid sub-
strate are described by the non-penetration condition for
the normal component of the velocity and the Navier slip
boundary condition for the tangential one, respectively

v2 = 0, v1 =
b

η
σ12, (A.3)

where for the Navier slip condition we use the Newtonian
shear stress, that is dominant in regions away from the
contact line [52]. We observe that b = 0 implies a no-slip
boundary condition with the substrate. The influence of
this parameter on the morphology of the dewetting front
in lubrication models has been investigated both theoret-
ically and experimentally, for instance see [40,41].

We nondimensionalize the system of governing equa-
tions using common scalings for long-wave formulations

x = Lx∗, (y, h, h⋆, b) = H(y∗, h∗, h∗

⋆, b
∗), (A.4)

v1 = V v∗

1 , v2 = εV v∗

2 , (p,Π) = P (p∗,Π∗), (A.5)

(t, λ1, λ2) = T (t∗, λ∗

1, λ
∗

2), (A.6)

(

σ11 σ12

σ12 σ22

)

=
η

T

⎛

⎜

⎜

⎝

σ∗
11

σ∗
12

ε

σ∗
12

ε
σ∗

22

⎞

⎟

⎟

⎠

, (A.7)

where H/L = ε ≪ 1 is the small parameter. To bal-
ance pressure, viscous and capillary forces, the pressure
is scaled with P = η/(Tε2), the surface tension with
γ = Γγ∗, where Γ = V η/ε3, and the time with T = L/V .
Following the formulation in [13], we can consider the
scaled surface tension, γ∗, to be equal to one, by choosing
the velocity so that the inverse capillary number is Ca−1 =
ε3γ/(V η) = 1 [53], and, subsequently, L = γε3T/η. More-
over, we notice that, by choosing the vertical length scale,
H, to be equal to the initially flat fluid interface height, we
can simplify the dispersion relations in sect. 4.1, with the
value h0 = 1. However, we refrain from applying this sim-
plification to allow for generalization to arbitrary choices
of the reference film thickness.

We note that one could also consider other scaling
factors. For instance, if gravity is considered to be the
sole driving force for instabilities, one could set the Bond
number B = 1. This leads to the capillary length scale,
i.e., L = (γ/(ρg))1/2. Subsequently, the pressure would
be scaled by P = γH/L2 = ρgH, the time by T =
ηγ/H3(ρg)2, the velocity determined by V = L/T , and
the normalized surface tension, similarly to the former
case, would be γ∗ = 1. However, in the current work, we
are interested in the competing mechanisms of the disjoin-
ing pressure and the gravitational force that together drive
the instabilities and affect their length scales; moreover,
as discussed in sect. 4.2, we want to be able to vary the
Bond number to be able to analyze the behavior of films
under the microgravity conditions. For this reason, we pre-
fer the former choice of scalings, given by eqs. (A.4)–(A.7).
To avoid a cumbersome notation, we drop the superscript
“∗” and consider for the rest of this document all quanti-
ties to be dimensionless.

The incompressibility condition (1b) is invariant under
rescalings, while the dimensionless forms of eq. (1a) for the
x and y components, respectively, are

ε2Re
Dv1

Dt
= ε2 ∂σ11

∂x
+

∂σ12

∂y
− px + S, (A.8a)

ε4Re
Dv2

Dt
= ε2

(

∂σ12

∂x
+

∂σ22

∂y

)

− py − C, (A.8b)

where Re = ρV L/η is the Reynolds number, assumed to
be of order 1/ε or smaller. In eqs. (A.8) we have used
S and C, whose definitions are given in eqs. (7), and the
extended notation for the derivatives ∂(·)/∂x and ∂(·)/∂y
(this version will be used from now on, whenever needed to
avoid double subscripts). The dimensionless distinct com-
ponents of the stress tensor given by the Jeffreys model,
eq. (2), satisfy

(1 + λ1∂t) σ11 = 2 (1 + λ2∂t)
∂v1

∂x
, (A.9a)

(1 + λ1∂t) σ22 = 2 (1 + λ2∂t)
∂v2

∂y
, (A.9b)

(1 + λ1∂t) σ12 = (1 + λ2∂t)
∂v1

∂y

+ε2 (1 + λ2∂t)
∂v2

∂x
. (A.9c)

The kinematic boundary condition, eq. (A.2), is invariant
under rescaling, while the non-penetration condition and
the Navier slip boundary condition for the velocity com-
ponents parallel to the substrate, given in eq. (A.3), in
dimensionless form are

v2 = 0, v1 = bσ12, (A.10)

where in the weak slip regime b = O(1) [14]. The leading-
order terms in the governing equations (A.8a) and (A.8b),
respectively, are

∂σ12

∂y
= px − S, (A.11a)

py = −C. (A.11b)
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The leading-order terms of the normal and tangential
components of the stress balance at the free surface,
y = h(x, t), eq. (3), respectively are

p = −hxx − Π, on y = h(x, t), (A.12)

and

σ12 = 0, on y = h(x, t). (A.13)

From eq. (A.11b) we know that the pressure is a lin-
ear function of y (see also [24, 53]). Hence, by integrat-
ing eq. (A.11b) and by using the boundary condition for
the pressure at the interface, given by the leading-order
term of the normal component of the pressure balance,
eq. (A.12), we obtain

p = −hxx − Π − C(y − h). (A.14)

The x component of the pressure gradient is given by dif-
ferentiating eq. (A.14) in the x direction, obtaining

px = −hxxx − Π ′hx + Chx. (A.15)

The nondimensional form of Π in eqs. (A.12) and (A.14)
is given by

Π =
γ(1 − cos θe)

ε2Mh⋆

[(

h⋆

h

)m1

−
(

h⋆

h

)m2
]

, (A.16)

where, we remark that all the quantities are considered
to be normalized. Moreover, in order for the expression
in eq. (A.16) to be O(1), we expand cos θe, by considering
θe = εθ∗e , so that 1−cos θe ≈ ε2θ∗e

2/2. Thus, we can recast

Π ≈ γθ∗e
2

2Mh⋆

[(

h⋆

h

)m1

−
(

h⋆

h

)m2
]

. (A.17)

For the particular set of parameters considered in the
present study (see sect. 2 and (14)), we notice that
γθ∗e

2/2Mh⋆ ∼ γ(1−cos θe)/Mh⋆ = O(1) (where the latter
expression has been used in this work).

Integrating eq. (A.11a) from y to h(x, t), we obtain

σ12 = (y − h)px − (y − h)S. (A.18)

Substituting this form of σ12, eq. (A.18), into eq. (A.9c),
we obtain (up to the leading order)

(1 + λ1∂t) [px(y − h) − S(y − h)] =

(1 + λ2∂t)
∂v1

∂y
. (A.19)

Integrating eq. (A.19) from 0 to y and using the corre-
sponding boundary conditions at the substrate, given in
eq. (A.10), we obtain

(1 + λ2∂t) (v1 + bhpx − bhS) =

(1 + λ1∂t)

[(

y2

2
− yh

)

(px − S)

]

. (A.20)

Integrating eq. (A.20) from y = 0 to y = h(x, t) gives

(1 + λ2∂t)

[

∫ h(x,t)

0

v1 dy + bh2px − bh2S
]

−λ2ht (v1(y = h(x, t)) + bhpx − bhS) =

− (1 + λ1∂t)

[

h3

3
(px − S)

]

+ λ1
h2

2
ht (px − S) . (A.21)

Taking the spatial derivative of the latter equation
and substituting it into the kinematic boundary condi-
tion (A.2), we obtain a long-wave approximation in terms
of v1 and h(x, t)

ht + λ2 [htt + ∂x(v1(y = h(x, t))ht)] =

∂x

[

(1 + λ1∂t)

(

h3

3
px − h3

3
S

)

+(1 + λ2∂t)
(

bh2px − bh2S
)

]

−∂x

{[

λ1
h2

2
(px − S) + λ2bh (px − S)

]

ht

}

. (A.22)

To write this in a closed form relation for h(x, t), we note
that eq. (A.20) can be written in a more compact form as
a linear ordinary differential equation for v1 (assuming all
other quantities known at a given time), as

v1 + λ2
∂v1

∂t
= −(1 + λ2∂t) (bhpx − bhS)

+(1 + λ1∂t)

[(

y2

2
− hy

)

(px − S)

]

. (A.23)

One can simply solve eq. (A.23) by integrating in time,
obtaining

v1 =
1

λ2

∫ t

−∞

e−
t−t

′

λ2 f̃(x, y, t′)dt′, (A.24)

with f̃ equal to the right-hand side of eq. (A.23). Inte-
gration by parts can be performed to recast eq. (A.24) at
y = h(x, t), and finally one finds the dimensionless form
of the governing equation (5).
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