
MATLAB Project:  Using Backslash to Solve Ax = b  Name_______________________________ 

Copyright © 2012 Pearson Education, Inc. Publishing as Addison Wesley 

 
Purpose:   To learn about backslash and why it is the preferred method for solving systems Ax =b  
 when A is invertible  
Prerequisite:  Section 2.2 and the discussion of condition number in Section 2.3 
MATLAB functions used:  \, inv, format, rand, norm, diary, hilb; and ref from Laydata4 

Toolbox 
 
Background:  This project is about square invertible matrices only. Suppose A is such a matrix and you 
want to solve .A =x b  By Theorem 5 in Section 2.2, there is a unique solution to this system. MATLAB 
has a special operator called backslash for solving this type of system, and it usually gives excellent 
results. It is the method people use in professional settings. To use it, store A and b and type A\b .   

 You may know two other methods in MATLAB for solving the matrix equation .A =x b You 
could type ref([A b])to get the reduced echelon form of the augmented matrix, and then read the 
solution from its last column. Alternatively, since A is assumed to be invertible here, you could type 
inv(A)*b , which by Theorem 5 must give the unique solution.    

Backslash is the best of these methods. It uses an algorithm that is fast and minimizes roundoff error.  It 
also checks the condition number of the coefficient matrix. If the condition number is large, it will be hard 
to get an accurate answer using any numerical method. Fortunately such matrices occur rarely in real 
world problems. But if backslash does detect a very large condition number, it will warn you by printing a 
message "Matrix is close to singular or badly scaled. Results may be 
inaccurate." Do not ignore such a warning if you ever see it, for it means the solution is probably not 
correct to very many digits. If you need more accuracy, consult a numerical analyst.  

The inv function also checks the condition number, but calculating 1A− requires a lot more 
arithmetic than backslash.   

It is definitely not wise to use ref to solve real world problems.  That function was written to help 
students learn linear algebra, so its algorithm is not optimal, and ref will not warn you if your linear 
system is one of those rare ones for which it is hard to get an accurate solution.    

1. (MATLAB) Here you will use the square matrices in exercises 29, 31, 39 and 41 in Section 2.2.  For 
each of these, you will create a linear system A =x b and solve it using all three methods described above.  
You will not see any warnings, so these are "good" problems.  You will also see that the solutions are 
almost identical as expected.   

(a) To get started, determine the path where you will store your work. For example, if you install a flash 
drive into the computer’s drive E: drive, type diary E:\solve to open a file called "solve" on 
your flash drive.  

 

diary E:\solve 
format compact  (this causes fewer blank lines to be printed, so more results fit on the screen) 
format long e (tell MATLAB to display numbers in exponent format with 15 digit mantissas) 
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Type the following lines to use the matrix in exercise 29 for the problem here: 

c2s2      (Opens Chapter 2 Section 2 Problems) 
29      (Loads the matrix for problem #29) 
[n,n] = size(A);  

 b = rand(n,1)    (create a  2x1  column with random number entries) 
 x1 = A\b     (Method 1:  solve  Ax = b  using backslash ) 
 x2 = inv(A)*b    (Method 2:  solve  Ax = b  using  inv ) 
 R = ref([A b]); x3 = R(:,n+1); (Method 3:  solve  Ax = b  using  ref ) 

Type [norm(x1–x2) norm(x1–x3) norm(x2–x3)] to calculate the lengths of the differences of 
the three solution vectors, and view them side by side. Record the norm of each difference vector, in the 
table below. You can round each mantissa to an integer.   

(b) Repeat the instructions above for the matrices in exercises 31, 39 and 41 in Section 2.2. Note that in 
exercises 39 and 41 the matrix is called D, not A, so modify your commands with  D\b,inv(D)*b,  
rref([D b]).   

Norms of the difference vectors 

 Exercise 29 Exercise 31 Exercise 39 Exercise 41 

x1-x2     

x1-x3     

x2-x3     

 

2. Fortunately, most matrices that show up in real world problems behave well in numerical calculations, 
like those in question 1. However, it is worthwhile to see some with large condition numbers, so you 
know they do exist!   

One of the classic types of matrices for which none of the methods above tends to yield a very 
accurate solution is the type called Hilbert matrices. There is a Hilbert matrix of every size, and 
MATLAB has a special command hilb for creating them, since they are frequently used as examples 
and test cases for new software.   

You will understand the pattern in their entries best if you display each decimal as a fraction.   Type 
the following lines to see the  4x4 and  5x5  Hilbert matrices in rational format:   

 format rat, hilb(4), hilb(5) 

Study these to see the pattern of entries.  Think what the first and last row of the 20x20 Hilbert matrix 
will look like.    



Page 3 of 3       MATLAB Project: Using Backslash to Solve Ax = b  

Copyright © 2012 Pearson Education, Inc. Publishing as Addison Wesley 

 
3.  (MATLAB)  Now solve A =x b when A is the 20x20 Hilbert matrix, using the three methods above.  
You already know what this big matrix looks like, so use semicolons as indicated to avoid printing the 
matrix and the large vectors:   

A = hilb(20); b = rand(20,1);       (create the 20x20  Hilbert matrix and a random 20x1 column) 
x1 = A\b; 
x2 = inv(A)*b; 
R = rref([A b]); x3 = R(:,21); 

If you did not see warnings from the calculations A\b and inv(A)*b , you may be working on a 
version which keeps more significant digits in its floating point calculations. If thisis the case , repeat the 
calculations using larger sizes of Hilbert matrices until you do see warnings by typing . so try 
 A = hilb(21); b=rand(21,1);  A = hilb(22); b=rand(22,1);  etc.  

(a)  Record the size which finally produces warnings: ____________.    

After solving  Ax = b with a matrix that causes warnings to appear, type the following line in order 
to view the three solutions you have created, in a  format that makes it fairly easy to compare them: 

 format long e, [x1 x2 x3] 

(b) The mantissas of the entries in x1 and x2 may agree in some digits, but this is quite misleading. 
To see how different these vectors really are, type [norm(x1–x2 norm(x1–x3) norm(x2–x3)] 
to calculate the norms of the difference vectors, and record those.  Round to integers as before: 

    Norms of the difference vectors for the Hilbert matrix problem 

 
x1–x2:  ________________       x1–x3:  ________________  x2–x3: ________________ 

Clearly the warnings are justified! Even the difference x1-x2 is very large, and x1 and x2 were 
calculated with the two professionally coded methods. These large differences in answers calculated by 
different algorithms reinforce the warnings. It would be very unwise to assume any of these solutions is 
very accurate.  

4.  To finish, type diary off, which will close the file called "solve" on your computer. Exit 
MATLAB and open this file with your favorite text editor. If it contains more than 4 pages, try to reduce 
its length before printing. For example, erase unnecessary blank lines or big matrices you may have 
created, and perhaps reduce the font size. Print the file and attach that printout to this project.   

Caution: This project is about square invertible coefficient matrices only. Do not use backslash 
when you want to solve a system in which the coefficient matrix is not square or may not be invertible.  
The reason is, the command A\b will give you an answer but it won’t be what you expect! If you want 
the "general solution" of such a system, use ref([A b]) and then write the general solution as you 
learned to do in Chapter 1.  When A is not invertible, the answer produced by A\b is a type of 
approximate numerical solution called a "least squares solution." (See Chapter 6.) This type of 
approximate solution is important for a large number of applications, which is why MATLAB has an easy 
way to calculate them.    


