Math 337 —-Midterm Exam 1—-Fall 2016

- 1. (20 points) Let $v_1 = (1, 1, -1)^T$, $v_2 = (2, 3, -4)^T$, $v_3 = (1, 0, 1)^T$, and $A = [v_1v_2v_3]$.
- a. Describe the set of all vectors $b = (b_1, b_2, b_3)^T$ for which the system Ax = b has a solution.
 - b) Solve $Ax = (1, 1, -1)^T$. Indicate free and basic cariables.
- c) Is $b = (1, 1, -1)^T$ in the span of the of the columns of A. If yes, write it as a linear combination of these columns. Is this representation unique. Explain.
 - d) Are the columns of A linearly independent? Explain.
- 2.(20 points) Let $v_1 = (1,3,4)^T$, $v_2 = (-1,-2,-3)^T$, $v_3 = v_4 = (-2,-2,-4)^T$, $A = [v_1v_2v_3v_4]$ and $b = (3,-1,2)^T$.
- a) Find the general solution of Ax = b in the form $x = p + x_h$. Indicate basic and free variables.
 - b) Give a particular (one) solution of Ax=b.
 - c) Write the solution set of the homogeneus equation Ax=0.
- 3. (20 points) Let $T: \mathbb{R}^4 \to \mathbb{R}^2$ and $S: \mathbb{R}^2 \to \mathbb{R}^3$ be given by $T(x_1, x_2, x_3, x_4) = (x_1 x_2 + x_3 + x_4, x_1 + x_2 + x_3 x_4)$ and $S(x_1, x_2) = (-x_1 + x_2, x_1 2x_2, 2x_1 x_2)$.
- a) Show that T, S and ST are linear transformations and find their standard matrices. Can you compute TS ?
 - b) Is $b = (1,1,1)^T$ the image of some v under ST? Justify your answer.
 - c) Is S one to one? onto? Justify your answer.
- d) (5 points-extra credit) Show that a linear transformation $L: \mathbb{R}^n \to \mathbb{R}^n$ is one-to one if and only if it is onto.
- 4. (20 points) Let $v_1 = (1, 0, -3)^T$, $v_2 = (0, 1, 4)^T$, $v_3 = (1, 3, 8)^T$, $A = [v_1 v_2 v_3]$ and $b = (1, 0, 1)^T$.
 - a) Use row operations to find the inverse of A.
 - b) Use the inverse to solve the system Ax=b.
 - c) Find the inverse of $A^{-1}A^{T}$.
 - d) Is $A A^T$ invertible? Justify your answer.
- 5. (20 points) a) (10 points) Compute the LU decomposition of $A = [v_1v_2v_3]$, where $v_1 = (2, 4, -6)^T$, $v_2 = (1, 1, -2)^T$, $v_3 = (3, 7, -12)^T$.
- b) (10 points) Let the LU decomposition of A be $L = [(1, -1, 4)^T (0, 1, 2)^T (0, 0, 1)^T]$ and $U = [(1, 0, 0)^T (-3, 2, 0)^T (4, 1, 5)^T]$. Use this LU decomposition to solve the system $Ax = (12, -12, 58)^T$ (hint:Solve Ly=b and then Ux=y).