
MATH 340 - Lab Instructor: Valeria Barra

Introduction to MATLAB programming

How to get started

When you open MATLAB, you can have different views, but one of the default ones

is usually as in the following figure. Usually on the left you see the Current Folder,

where you need to have the files that you want to run. The Command Window is the

environment where you can type and execute commands, or in any moment ask for

the documentation of any command by typing help name_of_the_command. The

Workspace is a very useful environment, especially to debug your code, because it

lists all the variables stored in that moment, their data types and their sizes. If you

want to see the content of any of those variables, just double click on their name

and you will see another tab with the contents of your Variables. The Command

History summarizes all the commands or executions of the scripts that you have run;

by double clicking on any of those commands in the list you can retrieve the same

command. We will open a new Script file by clicking the button on the top left corner

and we will write our program in there rather than in the Command Window, so

that our file will be saved and not lost when the software is closed. When you open a

new Script or a new Function, MATLAB shows them in the Editor environment. This

can be docked or undocked from the main page of the software. The outputs and

the Error messages will be shown by MATLAB in the Command Window.

The result of the execution of any line that is not terminated by a ; (semicolon

symbol) is going to be shown in the Command Window. BUT we will not use this

gimmick to display our outputs, rather we will learn how to use the commands disp,

sprintf and fprintf. Please see the file “Printing and Formatting your outputs”

at my webpage https://web.njit.edu/~vb82/teaching.html.

1

https://web.njit.edu/~vb82/teaching.html


2



Data Types

In MATLAB there are several types of variables, but by default MATLAB stores all nu-

meric variables as double-precision floating-point values. The collection of numerical

variables in MATLAB via arrays is very handy. In MATLAB every array is indexed start-

ing with the entry number 1, unlike other programming languages, such as C, C++.

It is not needed to declare the data type of the variable you are creating, but you can

simply declare it and initialize it at the same type. ALL assignments in MATLAB, and

programming in general, require that you specify the value that you want to assign

on the right hand side of an equal sign and the variable you want to store it into on

the left hand side of your assignment, as in the examples:

A = [1 2 3]; % a row-array that stores the numbers 1, 2, 3 (the entries in each row

can also be separated by commas). Spaces before and after the equal sign “=” are

not considered, nor necessary

B = [4; 5; 6]; % a column-array that stores the numbers 4, 5, 6

To reference one or more indexed entries of an array, MATLAB uses the round paren-

theses:

C = A(2); % it assigns the second entry of the array A to the variable C

D = [1 2 3; 4 5 6]; % a 2 × 3 matrix called D

E(1,2) = D(2,3); % it references to the second row and third column entry of the

matrix D and assigns it to the first row and second column of the matrix E

The symbol : (colon) in MATLAB is very useful (it reads “from ... to ...”), and it

allows to reference group of consecutive entries, as in the examples:

F = 1:10; % it creates an array of integers equally spaced (the default spacing is 1)

and assigns it to the variable F

G(1,2:11) = F; % it assigns the array F to the first row of G, from the second to

the eleventh column

H = 0:0.1:1; % it creates an array that has as first entry a 0, that it is uniformly

spaced with spacing 0.1, and it has as last entry 1. Q: How many entries does this

3



array have? A: If you are not sure, you can retrieve the length of any array by simply

using the command length

Operations with arrays

If you multiply two arrays or matrices A and B, by simply typing A*B, MATLAB will

perform a row-by-column matrix multiplication. Any operation between arrays or

between an array and a scalar that you want to perform componentwise in MATLAB

is very easily performed by the “ . ” (dot operator). Examples:

I = A.*B’; % the component-wise product of the arrays A and B transposed (note

the transposition of the vector B by the ’ operator) is stored inside of an array I

>> I = 4 10 18

L = A*B; % the row-by-column matrix multiplication between the 1×3 array A and

the 3×1 array B produces a scalar, as a result of the scalar product or “dot product”

between vectors

>> L = 32

M = B.^2; % it elevates to the power 2 each entry of the array B

Note that MATLAB, that stands for “Matrix Laboratory”, is really very handy to

work with arrays and matrices. The examples just shown above with the shortcuts

“:” or “.” would be needed to be calculated through the use of loop control sequences

in any other programming language.

Loops

With loop control statements, you can repeatedly execute a block of code.

for loop:

for statements loop a specific number of times, and keep track of each iteration with

an incrementing index variable, that is AUTOMATICALLY incremented by MATLAB

4



(the default increment is +1). Examples:

for i=2:9 % if no spacing is specified, the default one is +1

A(i) = 2*i; % every time it multiplies 2 ∗ i and assigns it to the ith entry of a

variable A. (hence, it will allocate from the second to the ninth entry of A)

end

for j=0:2:8 % the index j starts from 0 and with spacing 2 goes up to 8

B(j+1) = 2^j; % it stores the even powers of 2 from 20 to 28 inside of the

1st, 5th, 7th, 9th entries of B

end

while loop:

while statements loop as long as a condition remains true. For example:

i = 10; % the scalar i is initialized at 10

while i >= 0

% until i is greater or equal to 0

i = i-2; % every time it subtracts 2 to i

end

Q: What will be the final value of the variable i?

MATLAB functions

To implement a task, it is useful and more organized to create a function that

will perform the task separately from the Script file where you initialize your param-

eters and format or display your output. Not only this saves you time, it allows for

generality of your programs and you can easily and quickly retrieve the same block of

code and implement it with different numerical values. For example, if I ask you to

write a program that computes the summation of some integer numbers, it is useful

to write a function that performs the summation in a separate file from your script

and simply call your function by typing its name and the eventual input arguments

from your Script file. The syntax in MATLAB to declare a new function is:

5



function [ output_args ] = Name_of_your_function( input_args ) % the sig-

nature of the function has the key-word function, the output arguments in brackets,

an equal sign, the name of your function, and the input arguments in parentheses

Example of a function that performs the summation of the first n integers:

function [ S ] = MySum( n )

% the body of the function here

S = 0;

for i=1:n

S = S + i; % Note that every time the variable S is overwritten

end

Then I can call this function from my Script file with different input arguments

as many times as I want. For instance:

S1 = MySum(5); % It assigns the output of the call of the function MySum with the

argument 5 to the variable S1

If you need to execute the same task and therefore call the same function with

several different parameters, it really saves you a lot of times if you call that function

in a loop, for instance:

for i=1:10

S(i) = MySum(i); % It assigns the output of the call of the function MySum

with the argument i that varies at every loop, to the ith entry of the variable S that

will be an array of increasing size at every loop iteration

end

Plotting

Visual data are very useful to understand your results. It is very important that

if I ask you to plot something, you remember to also include axes labels, plot title

and the legend, if more than one curve is shown in the same figure. MATLAB has

several types of line styles, markers and colors, to distinguish different curves in your

6



graphs. To see a list of them and examples, type help plot in your Command Win-

dow. Example of two curves superimposed in the same figure through the command

hold on:

x = linspace(0,10,1000); % it creates an array x with 1000 linearly equispaced

points between 0 and 10 that will be used as domain of our curves

plot(x,sin(x),’--r’,’LineWidth’,2); % plot of sin(x) with a dashed red line of

width 2 (the default value for LineWidth is 1)

hold on % this is the command to plot more curves in the same figure

plot([1:10],cos(1:10),’or’,’MarkerFaceColor’,’r’,’MarkerSize’,4); % plot

of ten discrete red dots along a cosine curve

hold on

plot(x,cos(x),’b’);% plot of a cosine blue solid curve

xlabel(’x’); % sets the x-axis label

ylabel(’y’); % sets the y-axis label

title(’Our first figure’); % sets the title as a character string

legend({’$\sin(x)$’,’Discrete Data along the cosine curve’,’$\cos(x)$’},...

’interpreter’,’latex’,’location’,’SouthWest’); % the different legend en-

tries need to be grouped inside of curly parentheses. The legend, as other commands,

has some options. One of these that I have used in this example says that we are

going to use LATEXsyntax and the other sets the location of the legend. You can let

MATLAB decide this by putting ’best’ as argument of the option ’location’. Note

the three . . . that allow multiline commands in MATLAB

How to Debug your code

The first time that you try to run your code, it will probably not work because

of some syntax mistake or bug that you have. Any Error message is displayed by

MATLAB in red in the Command Window. You can also see the link at the line at

which the error occurs and go there by simply clicking on it. To Debug your code

MATLAB has very useful tools like breakpoints. Breakpoints serve to stop the execution

7



x
0 1 2 3 4 5 6 7 8 9 10

y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Our first figure

sin(x)

Discrete Data along the cosine curve

cos(x)

8



of your code. It is therefore useful to set a breakpoint before the line at which your

error occurs and check the data types or the temporary values of your variables. To

set a breakpoint just double click on the little dash next to a line number and MATLAB

will mark that line with a red dot. Then, when you run the program, it will stop at

the set line and by simply hovering your mouse pointer over a variable, MATLAB shows

you a pop-up window with the summary of the variable data type and content. If

it is too long to display in the pop-up window, you can always access the variable’s

content in the Workspace environment.

How to easily display your code and results

Whenever you have to submit a Lab assignment, you have to SHOW ALL YOUR

WORK and RESULTS. To do so in MATLAB without the need of copying the text of

your programs or the images produced to put them in a separate file to print out,

there is the Publish tab in the Editor window that helps you saving a lot of time.

The Publish tab in fact prints out all the code that you have in a Script file and the

produced output (figures, tables, etc). You can set the extension (html file, Word

file, pdf file) of the published document.

9


