
WHY STUDY QUANTUM CHEMISTRY?

Physical Chemisty can be divided into three parts:

Matter in equilibrium

Thermodynamics - concepts of heat & internal 
energy, entropy, equilibrium

Applications to gases, liquids & solids

Macroscopic behavior

Statistical mechanics - relates macroscopic 
behavior to microscopic states of atoms & 
molecules

Physical & chemical kinetics

Collisions - gases, liquids

Reactions between molecules due to collisions

Structure of matter - study of the microscopic world of
atoms & molecules that can’t be perceived directly with our
senses.  Rather, we need special techniques and eqiuipment
(spectroscopy, computer technology) to observe & understand
it.

Quantum chemistry - study of atomic & molecular structure &
reactivity



Quantum mechanics - mathematical framework used in
quantum chemistry

We will study:

Examples of quantum-like behavior that lead scientists to
the idea that the classical description of nature could not
describe all phenomena

Photoelectric Effect

Blackbody radiation

Model systems

Harmonic oscillator (model for molecular 
vibration)

Rigid Rotor (model for molecular rotation)

Atoms

Molecules  

Light and the Electromagnetic Spectrum

Light - common term for electromagnetic radiation

It is oscillating force field that has both direction of
propagation & magnitude

It oscillates in time with frequency, ν (period τ=1/ ν)



At any time, t, the magnitude of the time-dependent part
of the force field

Force α sin (2πνt + constant)

If the direction of propagation is along the x-axis, then the
magnitude of the spatial part of the force field is proportional to

F(x) α sin (x/λ + constant),

where λ is the wavelength (the distance between two
consecutive wave crests.

In a vacuum, the speed of the electromagnetic radiation of
any  wavelength is c, the speed of light

c = 3.00 x 108 m/s = ν λ

One can probe the electronic structure of atoms and
molecules by using radiation of wavelength which
corresponds to energy level spacing

Wave-Particle Nature of Light and Electrons

As experimental techniques became more sophisticated,
scientists noticed that in some cases light behaved as a wave, in
other cases as a particle

Wave: light passing through a slit gives a diffraction
pattern typical of waves

Particle:



Blackbody radiation
Photoelectric effect
Spectrum of hydrogen atom

Wave nature of the electron:
de Broglie
Davisson & Germer

Blackbody  Radiation

A blackbody is a sealed container with a pinhole through
which radiation can be absorbed.  The blackbody absorbs
essentially all radiation the radiation that falls on it.  When it is
heated, it emits radiation of all frequencies, allowing study of
the energy distribution and its temperature dependence.  Many
attempts were made to come up with a mathematical formula
that would describe the experimentally-observed temperature
dependence of the energy distribution at low and high
frequency, assumimg that the electromagnetic field could be
described as a collection of classical oscillators.  

Nothing worked until Plank suggested that each oscillator
could take on only certain discrete energies:

E = nhν,

where n = 0, 1, 2, 3,... and h is a constant that came to be
known as Plank’s constant.  This means that light energy is
absorbed or emitted in finite (quantized) units of hν.  This was
a revolutionary idea, since in classical physics, light can be
absorbed or emitted in continuous amounts.  



 The Spectrum of the Hydrogen Atom

When hydrogen atoms were excited electrically in a
sodium vapor lamp, they emitted radiation that could be
observed in the visible region of the electromagnetic spectrum.
The result was a “line spectrum” of hydrogen in which lines
appeared at certain values of the frequency (or wavelength)

By trial & error, Balmer came up with a formula that
related all the wavelengths in the series (which became known
as the Balmer series):

        1/λ = R (1/22 - 1/n2),

where n = 3, 4,... and R = 109,677 cm-1

Bohr was able to derive this relationship from physical
principles using a classical picture of an electron moving
around a proton like a planet around the sun.  He assumed that:

the system obeyed Newton’s Law’s of Motion, and

the attraction between electron and proton was due to
Coulomb’s Law’s of electricity

But he applied a quantum condition on the angular momentum
of the electon (i.e. the momentum due to its circular motion):

the angular momentum could only take on certain values
(not a continuous range of values as in classical physics)



By combining this quantum condition with the classical
physical picture above, Bohr was able to “derive” a general
expression which incorporated Balmer’s formula (n1=2):

  1/λ = R (1/n1
2 - 1/n2

2),

where n1 = 1,2,3,... and n2 = 2, 3, 4... Using this formula,
Bohr was able to correctly predict the lines in the Paschen
series (n1=3) found in the IR region and in the Lyman series
(n1=1) found in the UV region.

However, Bohr’s approach was an odd mixture of classical
mechanics and quantum hypotheses.  It was not rigorously
derived from first principles.  It was only accurate for one-
electron atoms or ions (5% in error for helium)

THE FORMULATION OF QUANTUM MECHANICS

1926 - Schrödinger formulated quantum (or wave) mechanics to
describe wavelike behavior & energy quantization

It was called wave mechanics because it was based on
differential equations similar to those that describe wave motion
or a vibrating string.  It was shown to be equivalent to a matrix
mechanics method developed by Heisenberg, Born, and Jordan
at the same time.

The state of a classical system (i.e. made up of
macroscopic particles) is defined by specifying all the forces
acting on the system, as well as all the positions & velocities.
Knowledge of the present state of the system leads to prediction
of the future state



But, for a microscopic (i.e. quantum mechanical)  system,
it is impossible to know both the position & momentum of the
particles (Heisenberg’s Uncertainty Principle)

The state of a quantum mechanical system is defined by

Ψ - state function

Ψ is a time-dependent wavefunction which is a function of the
particle coordinates & time. For a two-particle system,

Ψ(x1,y1,z1,x2,y2,z2,t)

where the (x,y,z) are cartesian coordinates and t is the time. Ψ
is an abstract quantity, but can be related to a physically
measurable quantity (observable). Ψ is a complex number,
Ψ = x + iy.

Schrödinger postulated the eqn. that describes how Ψ
changes with time.  Since it explains physical phenomena, the
postulate must be correct.  For an n-particle system:

-(  h  /i)(∂Ψ/ ∂t) = -(  h  2/2m1)(∂2Ψ/∂x1
2+∂2 Ψ/∂y1

2+∂2Ψ/∂z1
2)

+ ... -(  h  2/2mn)(∂2Ψ/∂xn
2+∂2 Ψ/∂yn

2+∂2Ψ/∂zn
2) + V Ψ

where mi is the mass, (xi, yi, zi) are the Cartesian coordinates of
particle i, and  h  = h/(2π). The first n terms on the right-hand
side are kinetic energy terms, the last is a potential energy term.

V = V(x1, y1, z1, ... xn, yn, zn)



is derived from the forces on the system:

-∂V/∂x = Fx = magnitude of force in x-direction

Analogous to classical mechanics, knowledge of the
present state can lead to prediction of the future state of the
system.  But knowledge in the quantum mechanical case is only
probability.  If one knows Ψ at time to, i.e.

Ψ(x1, y1, z1, ... xn, yn, zn, to),

one can predict Ψ at a later time since the Schrödinger eqn. is
given in terms of the first derivative of Ψ with respect to t.
Integration of the eqn. with respect to t leads to Ψ at a later
time (with a constant of integration).

Quantum & classical mechanics are related by taking the
limit of an eqn. as

  h     →   0     (classical limit)

Ψ itself has no physical interpretation.  But

| Ψ |2

is the probability density for finding the particle in a given
region of space. |Ψ |2 is non-negative, real, & normalizable. Ψ
contains all the information needed to calculate the probability
of position, momentum or other properties of a system (such as
dipole moment, polarizability, etc. of molecules)



MATHEMATICAL PRELIMINARIES

Probability - gives the likelihood of occurance of a particular
event

If an experiment has n equally probable outcomes with m
of them favorable to the occurrence of event A, then the
probability that A occurs is m/n.

If one performs an experiment n times & A occurs m
times, then the probability of A occuring is

   lim        m/n.
              n → ∞

Example:  Coin toss--the fraction of times “heads” comes up
approaches 1/2 as the number of tosses increases.

Example: Playing cards--A deck has 52 cards.  This means 52
equally probable outcomes (13 hearts, 13 spades, 13 clubs, 13
diamonds).  Draw a card from the deck.  What is the
probability that it will be a heart?  

m/n = 13/52 = 1/4

Related events:  What is the probability of drawing two hearts
from the deck consecutively (if you don’t replace the first)?

First draw: 52 equally probable outcomes
Second draw: 51 equally probable outcomes



Total number of equally probable outcomes = 
52x51

It is possible to get a heart in the first draw in 13
different ways; In the second draw, 12 different ways.  

Total number of ways = 13x12

Probability = 13x12/(52x51) = 1/17

The probability that A & B both occur is the
probability of A times the probability of B, calculated assuming
A occured

The Heisenberg Uncertainty Principle  states that the position
& momentum of a quantum mechanical particle cannot both be
specified exactly.

For example, the probability of finding a particle at exactly
x = 0.500 is zero.

One can only talk of the probability  of finding a particle
in a region of space

For a 1-dimensional system, dx is an infinitesimal element
of length along the x-axis.

The probability of finding the particle will vary at different
points along the x-axis

| Ψ |2 is the probability density (i.e. the probability/unit
length).  It describes the probability of finding the particle at
different points on the x-axis.  



Since | Ψ |2 has physical meaning, it must be:

real
non-negative

Ψ  describes the spatial & temporal behavior of the quantum
mechanical partical.  It is not a physical observable.  It can be
negative or complex.

What is the probability that the particle lies between a & b on
the x-axis?

∫a
b | Ψ |2 dx

A probability of 1 equals a certainty.  So in a 1-dimensional
problem, the particle must be somewhere  on the x-axis. So the
probability of finding it somewhere on the x-axis is equal to 1:

∫-∞
∞ | Ψ |2 dx = 1.

If this holds for Ψ, then Ψ is said to be normalized.  

If ∫-∞
∞ | Ψ |2 dx is not equal to 1, then Ψ be normalized by

multiplying by a constant so that the integral equals 1.

For example, what if

∫-∞
∞ | Ψ1 |2 dx = 4 ?

Define Ψ2  = c Ψ1. Find c such that ∫-∞∞ | Ψ2 |2 dx = 1.



∫-∞
∞ | Ψ2 |2 dx = c2 ∫-∞

∞ | Ψ1 |2 dx = c2 4 = 1.

So c2 = 1/4 & c = 1/2.

The normalized wavefunction is

 Ψ2 = (1/2) Ψ1

Complex Numbers

z is a complex number:     z = x + i y,

where x & y are real & i = √-1.

x = Real part of z = Re (z) = r cos θ

y = Imaginary part of z = Im (z) = r sin θ

 z  = r = absolute value or modulus of z = (x2 + y2)1/2

θ = phase, argument; tan θ = x/y

Complex Plane:

y z
r

θ
x



z = x + i y = r cos θ + i r sin θ = r (cos θ + i  sin θ) = r eiθ

Complex Conjugate: replace i by - i:

z* =  x - i y = r cos θ - i r sin θ = r (cos θ - i  sin θ) = r e-iθ

 z 2 = z z* = r eiθ r e-iθ = r2.

For a real number, y = 0 & z = z*.

Time-Independent Schrödinger Eqn.:

Function of only Cartesian coordinates

Example: 1 particle in 1 dimension   Ψ = Ψ (x,t)

Assume V depends only on x: V = V(x)

-(  h  /i)∂Ψ(x,t)/∂t = - (  h 2/2m) ∂2Ψ(x,t)/∂x2 + V(x)Ψ(x,t)

USE THE METHOD OF SEPARATION OF VARIABLES TO
OBTAIN AN EQN. FOR ψ (x):

Assume Ψ(x,t) = f(t) ψ (x) since V depends only on x, not x &
t.  

∂Ψ(x,t)/∂t = ψ(x) df(t)/dt

∂2Ψ(x,t)/∂x2 = f(t) d2ψ(x)/dx2



So
-(  h  /i) (df/dt) ψ(x) = - (  h  2/2m) f(t) d2ψ(x)/dx2 + V(x)ψ(x) f(t)

Divide by f(t)ψ(x) to get all terms in t on one side & all terms
in x on the other:

-(  h  /i) (df/dt)(1/f(t)) =  - (  h  2/2m) (1/ψ(x))  d2ψ(x)/dx2 + V(x)

Since the left side depends only on t & the right side depends
only on x & the two sides are equal to each other, then they
must be equal to a constant, let’s call it E.

-(  h  /i) (df/dt)(1/f(t)) = E

Rearrange & integrate:

∫df(t)/f(t) = -(i/  h  ) E ∫ dt

Or    ln f(t) = -(i/  h  ) E t + C

  f(t) = e -(i/h) Et + C = A e -(i/h) Et

Since Ψ(x,t) = f(t) ψ (x), the arbitrary constant A could be
included in ψ (x) instead so that

f(t) = e -(i/h) E t

Also

- (  h  2/2m) (1/ψ(x)) d2ψ(x)/dx2 + V(x) = E



This leads to the time-independent Schrödinger Eqn. for a
particle of mass m moving in a potential V:

d2ψ(x)/dx2 + (2m/  h  2) (E - V(x)) ψ(x) = 0

where E has dimensions of energy & is a real number. (In order
to solve this eqn. with two unknowns (ψ & E) must impose
boundary conditions in order to get another eqn.  We will see
how this is done when we study the model systems.)

So, Ψ(x,t) = e -(i/h) E t ψ(x)

where Ψ is complex & Ψ 2 is the probability density.

Ψ 2 = Ψ(x,t) Ψ*(x,t) = e -(i/h) E t ψ(x) e (i/h) E t ψ*(x)

= ψ(x) ψ*(x) = ψ 2

ψ is the wavefunction for a stationary state, one that doesn’t
change with time.  The particle moves, but ψ 2 is stationary

Conditions on ψ:

ψ must be

(1) single-valued
(2) continuous
(3) quadratically integrable.



(1) ψ must have only one value for each value of the variable

Multivalued ψ

Single-valued ψ

(2) There must be no sudden jumps in value

Discontinuous: ψ = tan x

Continuous: ψ = sin x

(3) ∫ ψ 2 dτ = finite number



If ψ = x2, then ∫−∞
∞ ψ 2 dx = ∫ −∞

∞ x4 dx = ∞

ψ is not an acceptable wavefunction


