MATHEMATICAL \& PHYSICAL CONCEPTS IN QUANTUM MECHANICS

Operators

An operator is a symbol which defines the mathematical operation to be cartried out on a function.

Examples of operators:
$\mathrm{d} / \mathrm{dx}=$ first derivative with respect to x
$V=$ take the square root of
3 = multiply by 3
Operations with operators:
If $A \& B$ are operators \& f is a function, then

$$
\begin{aligned}
& (A+B) f=A f+B f \\
& \quad A=d / d x, B=3, f=f=x^{2} \\
& \quad(d / d x+3) x^{2}=d x^{2} / d x+3 x^{2}=2 x+3 x^{2}
\end{aligned}
$$

$$
\mathrm{ABf}=\mathrm{A}(\mathrm{Bf})
$$

$$
\mathrm{d} / \mathrm{dx}\left(3 \mathrm{x}^{2}\right)=6 \mathrm{x}
$$

Note that $\mathrm{A}(\mathrm{Bf})$ is not necessarily equal to $\mathrm{B}(\mathrm{Af})$:

$$
\begin{aligned}
& A=d / d x, B=x, f=x^{2} \\
& A(B f)=d / d x\left(x \cdot x^{2}\right)=d / d x\left(x^{3}\right)=3 x^{2}
\end{aligned}
$$

$B(\mathrm{Af})=x\left(\mathrm{~d} / \mathrm{dx} \mathrm{x} \mathrm{x}^{2}\right)=2 \mathrm{x}^{2}$
In general, $\mathrm{d} / \mathrm{dx}(\mathrm{xf})=\mathrm{f}+\mathrm{xdf} / \mathrm{dx}=(1+\mathrm{xd} / \mathrm{dx}) \mathrm{f}$
So $\mathrm{d} / \mathrm{dx} \mathrm{x}=1+\mathrm{x} \mathrm{d} / \mathrm{dx}$
Since A \& B are operators rather than numbers, they don't necessarily commute. If two operators A \& B commute, then

$$
\mathrm{AB}=\mathrm{BA}
$$

and their commutator $=0$:

$$
[\mathrm{A}, \mathrm{~B}]=\mathrm{AB}-\mathrm{BA}=0
$$

(Numbers always commute: $2 \cdot 3 \mathrm{f}=3 \cdot 2 \mathrm{f} ;[2,3]=0$)
What is the commutator of $\mathrm{d} / \mathrm{dx} \& \mathrm{x}$?

$$
[\mathrm{d} / \mathrm{dx}, \mathrm{x}]=?
$$

Since we have shown that $d / d x x=1+x d / d x$, then

$$
[\mathrm{d} / \mathrm{dx}, \mathrm{x}]=\mathrm{d} / \mathrm{dx} \mathrm{x}-\mathrm{x} \mathrm{~d} / \mathrm{dx}=1
$$

What is the commutator of $3 \& d / d x$?

$$
[3, \mathrm{~d} / \mathrm{dx}] \mathrm{f}=3 \mathrm{~d} / \mathrm{dx} \mathrm{f}-\mathrm{d} / \mathrm{dx} 3 \mathrm{f}=3 \mathrm{~d} / \mathrm{dx} \mathrm{f}-3 \mathrm{~d} / \mathrm{dxf}=0=
$$

$$
[\mathrm{d} / \mathrm{dx}, 3]
$$

Equality of operators: If $\mathrm{Af}=\mathrm{Bf}$, then $\mathrm{A}=\mathrm{B}$
Associative Law: $\mathrm{A}(\mathrm{BC})=(\mathrm{AB}) \mathrm{C}$

Square of an operator: Apply the operator twice $A^{2}=A$ A

$$
(\mathrm{d} / \mathrm{dx})^{2}=\mathrm{d} / \mathrm{dx} \mathrm{~d} / \mathrm{dx}=\mathrm{d}^{2} / \mathrm{dx}^{2}
$$

$\mathrm{C}=$ take the complex conjugate; $\mathrm{f}=\mathrm{e}^{\mathrm{ix}}$

$$
\begin{aligned}
& \mathrm{C} \mathrm{f}=\left(\mathrm{e}^{\mathrm{ix}}\right)^{*}=\mathrm{e}^{-\mathrm{ix}} \\
& \mathrm{C}^{2} \mathrm{f}=\mathrm{C}(\mathrm{Cf})=\mathrm{C}\left(\mathrm{e}^{-\mathrm{ix}}\right)=\left(\mathrm{e}^{-\mathrm{ix}}\right)^{*}=\mathrm{e}^{\mathrm{ix}}=\mathrm{f} \\
& \text { If } \mathrm{C}^{2} \mathrm{f}=\mathrm{f} \text {, then } \mathrm{C}^{2}=1
\end{aligned}
$$

Linear Operator: A is a linear operator if

$$
\begin{aligned}
& A(f+g)=A f+A g \\
& A(c f)=c(A f)
\end{aligned}
$$

where $\mathrm{f} \& \mathrm{~g}$ are functions \& c is a constant.
Examples of linear operators:

$$
\begin{aligned}
& \mathrm{d} / \mathrm{dx}(\mathrm{f}+\mathrm{g})=\mathrm{df} / \mathrm{dx}+\mathrm{dg} / \mathrm{dx} \\
& 3(\mathrm{f}+\mathrm{g})=3 \mathrm{f}+3 \mathrm{~g}
\end{aligned}
$$

Examples of nonlinear operators:
$\sqrt{ }(\mathrm{f}+\mathrm{g})$ is not equal to $\sqrt{ } \mathrm{f}+\sqrt{ } \mathrm{g}$ inverse $(f+g)=1 /(f+g)$ is not equal to $1 / f+1 / g$

Cautionary note: When trying to determine the result of operations with operators that include partial derivatives, always
using a function as a "place holder". For example, what is $(\mathrm{d} / \mathrm{dx}+\mathrm{x})^{2}$?

$$
\begin{aligned}
& (d / d x+x)^{2} f=(d / d x+x)(d / d x+x) f \\
& =(d / d x+x)(d f / d x+x f) \\
& =d / d x(d f / d x+x f)+x(d f / d x+x f) \\
& =d^{2} f / d x^{2}+d / d x(x f)+x(d f / d x)+x^{2} f \\
& =d^{2} f / d x^{2}+x d f / d x+f+x(d f / d x)+x^{2} f \\
& =\left(d^{2} / d x^{2}+2 x d / d x+1+x^{2}\right) f \\
& \text { So }(d / d x+x)^{2}=\left(d^{2} / d x^{2}+2 x d / d x+1+x^{2}\right)
\end{aligned}
$$

Eigenfunction/Eigenvalue Relationship:
When an operator operating on a function results in a constant times the function, the function is called an eigenfunction of the operator \& the constant is called the eigenvalue

$$
\operatorname{Af}(x)=k f(x)
$$

$f(x)$ is the eigenfunction $\& k$ is the eigenvalue
Example: $\mathrm{d} / \mathrm{dx}\left(\mathrm{e}^{2 \mathrm{x}}\right)=2 \mathrm{e}^{2 \mathrm{x}}$
$e^{2 x}$ is the eigenfunction; 2 is the eigenvalue
How many different eigenfunctions are there for the operator d/dx?

$$
\mathrm{df}(\mathrm{x}) / \mathrm{dx}=\mathrm{kf} \mathrm{f}(\mathrm{x})
$$

Rearrange the eq. to give: $d f(x) / f(x)=k d x$ and integrate both sides: $\int \mathrm{df}(\mathrm{x}) / \mathrm{f}(\mathrm{x})=\int \mathrm{k} d \mathrm{x}$
to give: $\quad \ln \mathrm{f}=\mathrm{kx}+\mathrm{C}$

$$
f=e^{k x+C}=e^{k x} e^{C}=e^{k x} C^{\prime}, C^{\prime}=e^{C}
$$

Since there are no restrictions on k , there are an infinite number of eigenfunctions of d / dx of this form.
C^{\prime} is an arbitrary constant. Each choice of k leads to a different solution. Each choice of C' leads to multiples of the same solution.

Any eigenfunction of a linear operator can be multiplied by a constant and still be an eigenfunction of the operator. This means that if $f(x)$ is an eigenfunction of A with eigenvalue k , then $\mathrm{cf}(\mathrm{x})$ is also an eigenfunction of A with eigenvalue k. Prove it :

$$
\begin{aligned}
& \operatorname{Af}(x)=k f(x) \\
& A[\operatorname{cf}(x)]=c[\operatorname{Af}(x)]=c[\operatorname{kf}(x)]=k[\operatorname{cf}(x)]
\end{aligned}
$$

To specify the type of eigenfunction of d / dx more definitively, one can apply a physical constraint on the eigenfunction, as we did with the Particle in a Box:
c e^{kx} must be finite as $\mathrm{x} \rightarrow \pm \infty$
The most general k is a complex number: $k=a+i b$
Then $c e^{k x}=c e^{(a+i b) x}=c e^{a x} e^{i b x}=c e^{a x}(\cos b x+i \sin b x)$

Since $\mathrm{e}^{\mathrm{ax}} \rightarrow \infty$ for $\mathrm{x} \rightarrow \pm \infty$, a must be 0
b can be any number
So c $e^{i b x}$ is the correct eigenfunction of $d / d x$.
Relationship of Quantum Mechanical Operators to Classical Mechanical Operators

In the 1-dimensional Schrödinger Eq.

$$
\left[\left(-h^{2} / 2 m\right) d^{2} / d x^{2}+V(x)\right] \psi(x)=E \psi(x),
$$

$\psi(\mathrm{x})$ is the eigenfunction, E is the eigenvalue, \& the Hamiltonian operator is

$$
\left(-\underline{h}^{2} / 2 m\right) d^{2} / d x^{2}+V(x)
$$

The Hamiltonian function was originally defined in classical mechanics for systems where the total energy was conserved. This occurs when the potential energy is a function of the coordinates only. this is the type of system to be studied with quantum mechanics.

The classical Hamiltonian expressed Newton's Eq. of Motion such that the energy was a function of the coordinates ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) \& conjugate momentum ($\mathrm{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}, \mathrm{p}_{z}$) where

$$
\mathrm{p}_{\mathrm{x}}=\mathrm{mv}_{\mathrm{x}} \quad \mathrm{v}_{\mathrm{x}}=\mathrm{p}_{\mathrm{x}} / \mathrm{m}
$$

with $\mathrm{m}=$ mass $\& \mathrm{v}_{\mathrm{x}}=$ velocity in the x -direction
Classical kinetic energy (KE) is defined as

$$
\mathrm{KE}_{\mathrm{x}}=(1 / 2) \mathrm{m}_{\mathrm{x}}^{2}=\mathrm{p}_{\mathrm{x}}^{2} /(2 \mathrm{~m})
$$

The classical Hamiltonian function is defined as the sum of the kinetic energy (a function of momentum) \& the potential energy (a function of cordinates)

$$
\mathrm{H}=\mathrm{p}_{\mathrm{x}}^{2} /(2 \mathrm{~m})+\mathrm{V}(\mathrm{x})
$$

for a 1-dimensional system
Comparison to the Schrödinger Eq. shows that

$$
\left(-\underline{h}^{2} / 2 \mathrm{~m}\right) \mathrm{d}^{2} / \mathrm{dx}^{2} \leftrightarrow \mathrm{p}_{\mathrm{x}}{ }^{2} /(2 \mathrm{~m})
$$

Some Postulates of Quantum Mechanics:
(1) Postulate: For every physical property, there is a quantum mechanical operator
(2) Postulate: To find the operator, write the classical mechanical expression for the property

$$
\mathrm{F}\left(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}, \mathrm{p}_{\mathrm{z}}\right)
$$

then substitute as follows:
Each coordinate operator, q , is replaced by multiplication by the coordinate

$$
\text { operator } \mathrm{q}=\mathrm{q} \cdot \quad \mathrm{q}=\mathrm{x}, \mathrm{y}, \mathrm{z}
$$

Each Cartesian component of momentum ($\mathrm{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}, \mathrm{p}_{\mathrm{z}}$) is replaced by the operator

$$
\mathrm{p}_{\mathrm{q}}=(\underline{\mathrm{h}} / \mathrm{i}) \partial / \partial \mathrm{q}=-\mathrm{i} \underline{\mathrm{~h}} \partial / \partial \mathrm{q}, \quad \mathrm{q}=\mathrm{x}, \mathrm{y}, \mathrm{z}
$$

So operator $\mathrm{x}=\mathrm{x} \cdot$, etc. , $\mathrm{p}_{\mathrm{x}}=-\mathrm{i} h \partial / \partial \mathrm{x}$, etc.
Then $\mathrm{p}_{\mathrm{x}}^{2}=(-\mathrm{i} \underline{\mathrm{h}} \partial / \partial \mathrm{x})^{2}=(\mathrm{i})^{2} \underline{h}^{2} \partial^{2} / \partial \mathrm{x}^{2}=-\underline{h}^{2} \partial^{2} / \partial \mathrm{x}^{2}$
Potential energy functions are usually functions of the coordinates, such as

$$
V(x)=a x^{2}
$$

In general, the operator $\mathrm{V}(\mathrm{x})$ is replaced by multiplication by $\mathrm{V}(\mathrm{x})$: $\mathrm{V}(\mathrm{x})$.

In summary
Classical mechanics (1-dimension)

$$
\mathrm{H}=\mathrm{T}+\mathrm{V}=\mathrm{KE}+\mathrm{PE}=\mathrm{p}_{\mathrm{x}}{ }^{2} /(2 \mathrm{~m})+\mathrm{V}(\mathrm{x})
$$

Quantum mechanics (1-dimension)

$$
\begin{aligned}
& \mathrm{H} \text { (operator) }=\mathrm{T} \text { (operator) }+\mathrm{V} \text { (operator) } \\
& \quad=-\left(\underline{h}^{2} / 2 \mathrm{~m}\right) \mathrm{d}^{2} / \mathrm{dx}+\mathrm{V}(\mathrm{x})
\end{aligned}
$$

(3) Postulate: The eigenvalues of a system are the only value a property can have
$H=$ Hamiltonian energy operator $=-\left(h^{2} / 2 m\right) d^{2} / \mathrm{dx}^{2}+V(x)$
$\mathrm{H} \psi_{\mathrm{i}}=\mathrm{E}_{\mathrm{i}} \psi_{\mathrm{i}}$ $\mathrm{i}=1,2, .$. different states

Measurement of the energy of the system will result in one of the E_{i} (eigenvalues, observables)

Example: Is $\Psi(\mathrm{x}, \mathrm{t})$ an eigenfunction of the p_{x} operator for the 1 dimensional particle in a box?

$$
\begin{aligned}
& \Psi(\mathrm{x}, \mathrm{t})=\mathrm{e}^{\mathrm{iEth}} \psi(\mathrm{x}) \quad \text { state function } \\
& \psi(\mathrm{x})=\sqrt{ }(2 / \mathrm{L}) \sin (\mathrm{n} \pi \mathrm{x} / \mathrm{L}), \quad \mathrm{E}_{\mathrm{n}}=\mathrm{n}^{2} \mathrm{~h}^{2} /\left(8 \mathrm{~mL}^{2}\right) \\
& \mathrm{p}_{\mathrm{x}}=-\mathrm{i} \underline{\mathrm{~h}} \partial / \partial \mathrm{x}
\end{aligned}
$$

For $\Psi(x, t)$ to be an eigenfunction of p_{x}, must have

$$
\mathrm{p}_{\mathrm{x}} \Psi(\mathrm{x}, \mathrm{t})=\mathrm{c} \Psi(\mathrm{x}, \mathrm{t})
$$

But $d / d x \sin (A x)=A \cos (A x)$, so $\Psi(x, t)$ is not an eigenfunction of p_{x}

Example: Is $\Psi(\mathrm{x}, \mathrm{t})$ an eigenfunction of the $\mathrm{p}_{\mathrm{x}}{ }^{2}$ operator for the 1dimensional particle in a box?

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{x}}^{2} \Psi(\mathrm{x}, \mathrm{t})=-\underline{h}^{2}\left(\mathrm{~d}^{2} / \mathrm{dx} x^{2}\right)\left\{\mathrm{e}^{\mathrm{iEt/h}} \sqrt{ }(2 / \mathrm{L}) \sin (\mathrm{n} \pi \mathrm{x} / \mathrm{L})\right\} \\
&=-\underline{h}^{2} \mathrm{e}^{\mathrm{iEt/h}} \sqrt{ }(2 / \mathrm{L})(\mathrm{n} \pi / \mathrm{L}) \mathrm{d} / \mathrm{dx} \cos (\mathrm{n} \pi \mathrm{x} / \mathrm{L}) \\
&=\underline{h}^{2} \mathrm{e}^{\mathrm{iEtth}} \sqrt{ }(2 / \mathrm{L})(\mathrm{n} \pi / \mathrm{L})^{2} \sin (\mathrm{n} \pi \mathrm{x} / \mathrm{L}) \\
&=\underline{h}^{2}(\mathrm{n} \pi / \mathrm{L})^{2}\left\{\mathrm{e}^{\mathrm{iEt/h}} \sqrt{ }(2 / \mathrm{L}) \sin (\mathrm{n} \pi \mathrm{x} / \mathrm{L})\right\} \\
&=\underline{h}^{2}(\mathrm{n} \pi / \mathrm{L})^{2} \Psi(\mathrm{x}, \mathrm{t}) \\
&=\mathrm{h}^{2}\left(\mathrm{n}^{2} /\left(4 \mathrm{~L}^{2}\right) \Psi(\mathrm{x}, \mathrm{t}) \quad\right. \text { Yes }
\end{aligned}
$$

Since $\mathrm{n}=1,2, .$. , the eigenvalue $\mathrm{h}^{2}\left(\mathrm{n}^{2} /\left(4 \mathrm{~L}^{2}\right)\right.$ is quantized.
Find the eigenfunctions of p_{x}.

$$
\begin{aligned}
& p_{x} g(x)=k g(x) \\
& -i \underline{h} d g / d x=k g \\
& d g / g=(i k / \underline{h}) d x \\
& \ln g=(i k / \underline{h}) x+C \\
& g=A e^{(i k / \underline{h}) x}
\end{aligned}
$$

To keep g well-behaved as $x \rightarrow \pm \infty, k$ must be real. So the eigenvalues of p_{x} are all the real numbers $\mathrm{k},-\infty<\mathrm{k}<\infty$.

Forms of Operators in 3-Dimensions \& More Than 1 Particle One particle in 3-dimensions:

$$
\begin{aligned}
\mathrm{T}= & \left(-\underline{h}^{2} / 2 \mathrm{~m}\right)\left(\partial^{2} / \partial \mathrm{x}^{2}+\partial^{2} / \partial y^{2}+\partial^{2} / \partial \mathrm{z}^{2}\right) \\
& =\left(-\underline{h}^{2} / 2 \mathrm{~m}\right) \nabla^{2} \quad \nabla^{2} \text { is the Laplacian operator }
\end{aligned}
$$

$$
\mathrm{H} \psi(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left\{\left(-\underline{h}^{2} / 2 \mathrm{~m}\right) \nabla^{2}+\mathrm{V}(\mathrm{x}, \mathrm{y}, \mathrm{z})\right\} \psi(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{E} \psi(\mathrm{x}, \mathrm{y}, \mathrm{z})
$$

The probability of finding the particle at time t in a region bounded by $(x, y, z) \&(x+d x, y+d y, z+d z)$ is

$$
\begin{aligned}
& |\psi(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})|^{2} \mathrm{dx} \text { dy dz } \quad \mathrm{d} \tau=\mathrm{dx} \text { dy dz } \\
& 1=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|\psi(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})|^{2} \mathrm{~d} \tau
\end{aligned}
$$

n particles in 3-dimensions:
Particle i has mass m_{i}, position $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}}\right)$ and momentum $\left(\mathrm{p}_{\mathrm{xi}}, \mathrm{p}_{\mathrm{yi}}, \mathrm{p}_{\mathrm{zi}}\right)$

$$
\begin{aligned}
\mathrm{T}= & \left(-\underline{h}^{2} / 2 \mathrm{~m}_{1}\right)\left(\partial^{2} / \partial \mathrm{x}_{1}^{2}+\partial^{2} / \partial \mathrm{y}_{1}^{2}+\partial^{2} / \partial \mathrm{z}_{1}^{2}\right)+ \\
& \left(-\underline{h}^{2} / 2 \mathrm{~m}_{2}\right)\left(\partial^{2} / \partial \mathrm{x}_{2}^{2}+\partial^{2} / \partial \mathrm{y}_{2}^{2}+\partial^{2} / \partial \mathrm{z}_{2}^{2}\right)+\ldots+ \\
& \left(-\underline{h}^{2} / 2 \mathrm{~m}_{\mathrm{n}}\right)\left(\partial^{2} / \partial \mathrm{x}_{\mathrm{n}}^{2}+\partial^{2} / \partial \mathrm{y}_{\mathrm{n}}^{2}+\partial^{2} / \partial \mathrm{z}_{\mathrm{n}}^{2}\right) \\
= & \sum_{\mathrm{i}=1}^{\mathrm{n}}\left(-\underline{h}^{2} / 2 \mathrm{~m}_{\mathrm{i}}\right) \nabla_{\mathrm{i}}^{2}
\end{aligned}
$$

If V depends only on the Cartesian coordinates,

$$
\mathrm{V}=\mathrm{V}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}, \mathrm{z}_{\mathrm{n}}\right)
$$

Then $\psi=\psi\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}, \mathrm{z}_{\mathrm{n}}\right)$ and

$$
\mathrm{H} \psi=\left\{\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(-\underline{h}^{2} / 2 \mathrm{~m}_{\mathrm{i}}\right) \nabla_{\mathrm{i}}^{2}+\mathrm{V}\left(\mathrm{x}_{1}, \ldots, \mathrm{z}_{\mathrm{n}}\right)\right\} \psi=\mathrm{E} \psi
$$

The probability of finding the first particle in a region bounded by $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right) \&\left(\mathrm{x}_{1}+\mathrm{dx}_{1}, \mathrm{y}_{1}+\mathrm{dy}_{1}, \mathrm{z}_{1}+\mathrm{dz}_{1}\right)$, the second particle in a region bounded by $\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ \& $\left(x_{2}+d x_{2}, y_{2}+d y_{2}, z_{2}+d z_{2}\right)$, etc. is

$$
\begin{aligned}
& \left|\psi\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}, \mathrm{z}_{\mathrm{n}}, \mathrm{t}\right)\right|^{2} \mathrm{~d} \tau \\
& \mathrm{~d} \tau=\mathrm{dx}_{1} \mathrm{dy}_{1} \mathrm{dz}_{1} \ldots \mathrm{dx}_{\mathrm{n}} \mathrm{dy}_{\mathrm{n}} \mathrm{~d} z_{\mathrm{n}} \\
& 1=\int_{-\infty}{ }^{\infty} \ldots \int_{-\infty} \infty\left|\psi\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}, \mathrm{z}_{\mathrm{n}}, \mathrm{t}\right)\right|^{2} \mathrm{~d} \tau
\end{aligned}
$$

Particle in a 3-Dimensional Box:

$$
V(x, y, z)=0 \quad 0<x<a, 0<y<b, 0<z<c
$$

$\psi=0$ outside the box, as in the 1-dimensional case

Inside the box: $\quad \mathrm{H} \psi=\mathrm{E} \psi$

$$
\left(-\underline{h}^{2} / 2 m\right)\left(\partial^{2} / \partial x^{2}+\partial^{2} / \partial y^{2}+\partial^{2} / \partial z^{2}\right)=\mathrm{E} \psi
$$

Solve by Method of Separation of Variables: Assume that ψ is a product of functions, each depending only on one variable. This is a reasonable assumption because the potential has no cross terms (i.e. terms including products of variables)

$$
\psi(x, y, z)=f(x) g(y) h(z)
$$

$H \psi=\left(-\underline{h}^{2} / 2 m\right)\left\{\mathrm{gh} \mathrm{d}^{2} f / \mathrm{dx}^{2}+\mathrm{fh} \mathrm{d}^{2} \mathrm{~g} / \mathrm{dy}^{2}+\mathrm{fg} \mathrm{d}^{2} h / \mathrm{dz}^{2}\right\}=$

$$
E f(x) g(y) h(z)
$$

Dividing both sides by $f(x) g(y) h(z)$ gives:
$\left(-\underline{h}^{2} / 2 m\right)\left\{(1 / f) d^{2} f / d x^{2}+(1 / g) d^{2} g / d y^{2}+(1 / h) d^{2} h / d z^{2}\right\}=E$
Can rewrite so that the left-hand side depends only on $\mathrm{x} \&$ the right-hand side depends only on y \& z:
$(1 / f) d^{2} f / d x^{2}=-(1 / g) d^{2} g / d y^{2}-(1 / h) d^{2} h / d z^{2}-2 m E / \underline{h}^{2}$
But this means that the left \& right-hand sides must be equal to a constant.

$$
\text { Let } k_{x}=(1 / f) d^{2} f / d x^{2}
$$

Could rewrite the eq. so that the left-hand side depends only on y, etc. and get

$$
\mathrm{k}_{\mathrm{y}}=(1 / \mathrm{g}) \mathrm{d}^{2} \mathrm{~g} / \mathrm{dy}^{2} \quad \mathrm{k}_{\mathrm{z}}=(1 / \mathrm{h}) \mathrm{d}^{2} \mathrm{~h} / \mathrm{dz}^{2}
$$

$$
\text { with } \mathrm{k}_{\mathrm{x}}+\mathrm{k}_{\mathrm{y}}+\mathrm{k}_{\mathrm{z}}=-2 \mathrm{mE} / \underline{h}^{2}
$$

Can redefine the energy components as

$$
\mathrm{k}_{\mathrm{x}}=-2 \mathrm{mE}_{\mathrm{x}} / \mathrm{h}^{2} \text {, etc. }
$$

So that $E_{x}+E_{y}+E_{z}=E$
and $(1 / f) d^{2} f / d x^{2}=-2 m E_{x} / h^{2}$, etc.
Then $d^{2} f / d x^{2}+2 \mathrm{mE}_{\mathrm{x}} / h^{2} \mathrm{f}=0$

$$
\begin{aligned}
& \mathrm{d}^{2} \mathrm{~g} / \mathrm{dy}^{2}+2 \mathrm{mE}_{\mathrm{y}} / \underline{h}^{2} \mathrm{~g}=0 \\
& \mathrm{~d}^{2} \mathrm{~h} / \mathrm{dz}^{2}+2 \mathrm{mE}_{z} / \underline{h}^{2} \mathrm{~h}=0
\end{aligned}
$$

Boundary Conditions: Functions must be zero at the walls.

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=0 \text { at } \mathrm{x}=0, \mathrm{a} \\
& \mathrm{~g}(\mathrm{y})=0 \text { at } \mathrm{y}=0, \mathrm{~b} \\
& \mathrm{~h}(\mathrm{z})=0 \text { at } \mathrm{z}=0, \mathrm{c}
\end{aligned}
$$

So the solutions are the same as for the 1-dimensional particle in a box:

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=\sqrt{ }(2 / \mathrm{a}) \sin \left(\mathrm{n}_{\mathrm{x}} \pi \mathrm{x} / \mathrm{a}\right), \mathrm{E}_{\mathrm{x}}=\left(\mathrm{n}_{\mathrm{x}}^{2} \mathrm{~h}^{2}\right) /\left(8 \mathrm{ma}^{2}\right), \mathrm{n}_{\mathrm{x}}=1,2, \ldots \\
& \mathrm{~g}(\mathrm{y})=\sqrt{ }(2 / \mathrm{b}) \sin \left(\mathrm{n}_{\mathrm{y}} \pi \mathrm{y} / \mathrm{b}\right), \mathrm{E}_{\mathrm{y}}=\left(\mathrm{n}_{\mathrm{y}}^{2} \mathrm{~h}^{2}\right) /\left(8 \mathrm{mb}^{2}\right), \mathrm{n}_{\mathrm{y}}=1,2, \ldots \\
& \mathrm{~h}(\mathrm{z})=\sqrt{ }(2 / \mathrm{c}) \sin \left(\mathrm{n}_{\mathrm{z}} \pi \mathrm{z} / \mathrm{c}\right), \mathrm{E}_{\mathrm{z}}=\left(\mathrm{n}_{\mathrm{z}}^{2} \mathrm{~h}^{2}\right) /\left(8 \mathrm{mc}^{2}\right), \mathrm{n}_{\mathrm{z}}=1,2, \ldots \\
& \mathrm{E}=\mathrm{E}_{\mathrm{x}}+\mathrm{E}_{\mathrm{y}}+\mathrm{E}_{\mathrm{z}}=\left(\mathrm{h}^{2}\right) /(8 \mathrm{~m})\left\{\mathrm{n}_{\mathrm{x}}^{2} / \mathrm{a}^{2}+\mathrm{n}_{\mathrm{y}}^{2} / \mathrm{b}^{2}+\mathrm{n}_{\mathrm{z}}^{2} / \mathrm{c}^{2}\right\}
\end{aligned}
$$

with the quantum numbers $\mathrm{n}_{\mathrm{x}}, \mathrm{n}_{\mathrm{y}}, \mathrm{n}_{\mathrm{z}}$ varying independently

$$
\psi(\mathrm{x}, \mathrm{y}, \mathrm{z})=\sqrt{ }[8 /(\mathrm{abc})] \sin \left(\mathrm{n}_{\mathrm{x}} \pi \mathrm{x} / \mathrm{a}\right) \sin \left(\mathrm{n}_{\mathrm{y}} \pi \mathrm{y} / \mathrm{b}\right) \sin \left(\mathrm{n}_{\mathrm{z}} \pi \mathrm{z} / \mathrm{c}\right)
$$

Normalize ψ :

$$
\begin{aligned}
& 1=\int_{-\infty} \infty \int_{-\infty} \infty \int_{-\infty} \infty|\psi(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})|^{2} \mathrm{~d} \tau \\
& \quad=\int_{0}{ }^{\mathrm{a}} \mathrm{dx}|\mathrm{f}(\mathrm{x})|^{2} \int_{0}^{\mathrm{b}} \mathrm{dy}|\mathrm{~g}(\mathrm{y})|^{2} \int_{0}{ }^{\mathrm{c}} \mathrm{dz}|\mathrm{~h}(\mathrm{z})|^{2}
\end{aligned}
$$

But each function is separately normalized

$$
1=\int_{0}{ }^{\mathrm{a}} \mathrm{dx}|\mathrm{f}(\mathrm{x})|^{2}, \text { etc. }
$$

so ψ is automatically normalized.
Consider a particle in a cube: $\mathrm{a}=\mathrm{b}=\mathrm{c}$,

$$
\begin{aligned}
& \mathrm{E}=\left(\mathrm{h}^{2}\right) /\left(8 \mathrm{~m} \mathrm{a}^{2}\right)\left\{\mathrm{n}_{\mathrm{x}}^{2}+\mathrm{n}_{\mathrm{y}}^{2}+\mathrm{n}_{\mathrm{z}}^{2}\right\} \\
& \text { or }\left\{\mathrm{n}_{\mathrm{x}}^{2}+\mathrm{n}_{\mathrm{y}}^{2}+\mathrm{n}_{\mathrm{z}}^{2}\right\}=\left(\mathrm{E} 8 \mathrm{ma} \mathrm{a}^{2}\right) / \mathrm{h}^{2}
\end{aligned}
$$

Tabulate

n_{x}	$\mathrm{n}_{\mathrm{y}} \mathrm{n}_{\mathrm{z}}$	111	211	121	112	122	221
$\left\{\mathrm{n}_{\mathrm{x}}{ }^{2}+\mathrm{n}_{\mathrm{y}}{ }^{2}+\mathrm{n}_{\mathrm{z}}{ }^{2}\right\}$	3	6	6	6	9	9	9

$\begin{array}{llllll}\mathrm{n}_{\mathrm{x}} & \mathrm{n}_{\mathrm{y}} \mathrm{n}_{\mathrm{z}} \\ \left\{\mathrm{n}_{\mathrm{x}}{ }^{2}+\mathrm{n}_{\mathrm{y}}{ }^{2}+\mathrm{n}_{\mathrm{z}}{ }^{2}\right\} & 113 & 131 & 311 & 222 & \text { etc } \\ & 11 & 11 & 11 & 12\end{array}$
Degeneracy occurs when two or more independent wavefunctions correspond to states with the same energy eigenvalue

Each set of ($\left.\begin{array}{lll}\mathrm{n}_{\mathrm{x}} & \mathrm{n}_{\mathrm{y}} & \mathrm{n}_{\mathrm{z}}\end{array}\right)$ corrsponds to an independent wavefunction. Since there are 3 independent wavefunctions which give $\left\{n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right\}=6$, the corresponding energy level is said to be 3 -fold degenerate.

A rectangular box wouldn't have degenerate energy levels. Degeneracy is related to the symmetry of the system.

The degree of degeneracy of an energy level equals the number of linearly independent wavefunctions corresponding to that value of the energy.

A set of n functions is said to be linearly independent if no member of the set can be written as a linear combination of the others.

$$
\begin{aligned}
& \psi_{1}, \psi_{2}, \psi_{3} \text {, etc are linearly independent if } \\
& c_{1} \psi_{1}+c_{2} \psi_{2}+\ldots+c_{n} \psi_{n}=0 \text { only if } c_{1}=c_{2}=\ldots=c_{n}=0
\end{aligned}
$$

Example: $\mathrm{f}_{1}=3 \mathrm{x}, \mathrm{f}_{2}=5 \mathrm{x}^{2}-\mathrm{x}, \mathrm{f}_{3}=\mathrm{x}^{2}$

$$
\mathrm{f}_{2}=5 \mathrm{f}_{3}-\mathrm{f}_{1} / 3
$$

not linearly independent
Example: $\mathrm{f}_{1}=1, \mathrm{f}_{2}=\mathrm{x}, \mathrm{f}_{3}=\mathrm{x}^{2} \quad$ linearly independent
Theorem: For any set of linearly independent eigenfunctions of the Hamiltonian operator, $\left(\Psi_{1}, \Psi_{2}, \ldots, \Psi_{n}\right)$, with eigenvalue ω, any linear combination of these eigenfunctions is also an eigenfunction of H with eigenvalue ω.

Prove that for

If

$$
\phi=\mathrm{c}_{1} \psi_{1}+\mathrm{c}_{2} \psi_{2}+\ldots+\mathrm{c}_{\mathrm{n}} \psi_{\mathrm{n}},
$$

and $\mathrm{H}_{\mathrm{i}}=\omega \psi_{\mathrm{i}}$
for $\mathrm{i}=1, \ldots, \mathrm{n}$
then $\mathrm{H} \phi=\omega \phi$
Proof: $\quad \mathrm{H} \phi=\mathrm{H}\left(\mathrm{c}_{1} \psi_{1}+\mathrm{c}_{2} \psi_{2}+\ldots+\mathrm{c}_{\mathrm{n}} \psi_{\mathrm{n}}\right)$

$$
\begin{aligned}
& =c_{1} H \psi_{1}+c_{2} H \psi_{2}+\ldots+c_{n} H \psi_{n} \\
& =c_{1} \omega \psi_{1}+c_{2} \omega \psi_{2}+\ldots+c_{n} \omega \psi_{n} \\
& =\omega\left(c_{1} \psi_{1}+c_{2} \psi_{2}+\ldots+c_{n} \psi_{n}\right) \\
& =\omega \phi
\end{aligned}
$$

Note that the degree of degeneracy of energy level ω is the number of linearly independent eigenfunctions (n) belonging to that level.

Average (or Expectation) Value of a Physical Property:
For a quantity that depends on discrete changes in the variables, the average value is defined by a sum

F - the physical property

<F>- average value of F
N - the number of systems that are measured
f_{i} - an observed value of F
n_{f} - the number of times f is observed
f - a possible value of F

$$
\langle\mathrm{F}\rangle=\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{f}_{\mathrm{i}} / \mathrm{N}=\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{n}_{\mathrm{f}} \mathrm{f} / \mathrm{N}
$$

Example: In a class there are $9(\mathrm{~N}=9)$ students. On a quiz the grades are: $0\left(\mathrm{f}_{1}\right), 20\left(\mathrm{f}_{2}\right), 20\left(\mathrm{f}_{3}\right), 60\left(\mathrm{f}_{4}\right), 60\left(\mathrm{f}_{5}\right), 80$
$\left(\mathrm{f}_{6}\right), 80\left(\mathrm{f}_{7}\right), 80\left(\mathrm{f}_{8}\right), 100\left(\mathrm{f}_{9}\right)$. There are 5 questions \& each question is either all right (20 points) or all wrong (0 points). Calculate the average grade.

$$
\begin{aligned}
\langle\mathrm{F}\rangle & =\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{f}_{\mathrm{i}} / \mathrm{N}=(1 / 9)[0+20+20+60+60+80+80+ \\
& 80+100=56
\end{aligned}
$$

Alternatively,
$\langle\mathrm{F}\rangle=\sum^{\mathrm{N}} \mathrm{n}_{\mathrm{f}} \mathrm{f} / \mathrm{N}$
The f possible values of F (and n_{f} number of times f is observed) are:

0 (1), 20 (2), 40 (0), 60 (20), 80 (3), 100 (1)

$$
\begin{aligned}
\langle\mathrm{F}\rangle & =(1 / 9)[1 \cdot 0+2 \cdot 20+0 \cdot 40+2 \cdot 60+3 \cdot 80+1 \cdot 100] \\
& =56
\end{aligned}
$$

Note that the average grade is not one of the possible or observed grades.

Since the probability, P_{f}, is defined as $\mathrm{n}_{\mathrm{f}} / \mathrm{N}$, then $\langle\mathrm{F}\rangle$ can be written as

$$
\langle\mathrm{F}\rangle=\sum_{\mathrm{f}} \mathrm{P}_{\mathrm{f}} \mathrm{f}
$$

For quantities that depend on variables that can take on a continuous range of values,

$$
\mathrm{P}_{\mathrm{f}}=|\psi|^{2} \mathrm{~d} \tau \quad \quad{\underset{\mathrm{f}}{ }}_{\Sigma} \rightarrow \int
$$

$\langle\mathrm{F}\rangle=\int \Psi^{*} \mathrm{~F} \Psi \mathrm{~d} \tau$,
where Ψ is the time-dependent wavefunction
Since F is an operator, cannot write $|\Psi|^{2} F$. Must have $\Psi^{*} \mathrm{~F} \Psi$, unless F is a function of coordinates only
$\int \mathrm{d} \tau$ is shorthand notation which means integrate over the correct variables \& volume element.

For n particles in 3 dimensions, $\int \mathrm{d} \tau=$

$$
\int_{-\infty}{ }^{\infty} \mathrm{dx}_{1} \int_{-\infty}{ }^{\infty} d \mathrm{y}_{1} \int_{-\infty}{ }^{\infty} \mathrm{dz} \mathrm{z}_{1} \ldots \int_{-\infty}^{\infty} \mathrm{dx}_{\mathrm{n}} \int_{-\infty}{ }^{\infty} d \mathrm{y}_{\mathrm{n}} \int_{-\infty}^{\infty} \mathrm{d} \mathrm{z}_{\mathrm{n}}
$$

For 1 particle in 1 dimension, $\int \mathrm{d} \tau=\int_{-\infty}{ }^{\infty} \mathrm{dx}$
A stationary state is defined as one for which the probability density doesn't vary in time

$$
\mathrm{d}|\Psi|^{2} / \mathrm{dt}=0
$$

For these states (\& if F is independent of time), one can show that

$$
\Psi^{*} \mathrm{~F} \Psi=\psi^{*} \mathrm{~F} \psi
$$

This is because

$$
\Psi=\mathrm{e}^{-\mathrm{EE} t \mathrm{~h}} \psi
$$

So $\quad \Psi^{*} F \Psi=e^{\mathrm{iEt/h}} \psi^{*} F \mathrm{e}^{-\mathrm{iEt/h}} \psi$

Since F is independent of time, $\mathrm{Fe}^{-\mathrm{EEth}} \psi=\mathrm{e}^{-\mathrm{EEth}} \mathrm{F} \psi$, and $\Psi^{*} \mathrm{~F} \Psi=\mathrm{e}^{\mathrm{iEth}} \mathrm{e}^{-\mathrm{EEth}} \psi^{*} \mathrm{~F} \psi=\psi^{*} \mathrm{~F} \psi$.

The average value of a sum of operators equals the sum of the average values of the operators:

$$
\langle\mathrm{F}+\mathrm{G}\rangle=\langle\mathrm{F}\rangle+\langle\mathrm{G}\rangle
$$

But the average value of a product of operators is not equal to the product of the average values of the operators:

$$
\langle\mathrm{F} \cdot \mathrm{G}\rangle \text { is not equal to }\langle\mathrm{F}\rangle \cdot\langle\mathrm{G}\rangle
$$

Example: Find $<\mathrm{F}>$ for $\mathrm{F} \psi=\mathrm{k} \psi$.

$$
\begin{aligned}
\langle\mathrm{F}\rangle & =\int \psi^{*} \mathrm{~F} \psi \mathrm{~d} \tau=\int \psi^{*} \mathrm{k} \psi \mathrm{~d} \tau=\mathrm{k} \int \psi^{*} \psi \mathrm{~d} \tau \\
& =\mathrm{k}
\end{aligned}
$$

since $\int \psi^{*} \psi \mathrm{~d} \tau=1$.

