
MATHEMATICAL & PHYSICAL CONCEPTS IN
QUANTUM MECHANICS

Operators

An operator is a symbol which defines the mathematical
operation to be cartried out on a function.

Examples of operators:

d/dx = first derivative with respect to x

√ = take the square root of

3 = multiply by 3

Operations with operators:

If A & B are operators & f is a function, then

(A + B) f = Af + Bf

A = d/dx, B = 3, f = f = x2

(d/dx +3) x2 = dx2/dx +3x2 = 2x + 3 x2

ABf = A (Bf)

d/dx (3 x2) = 6x

Note that A(Bf) is not necessarily equal to B(Af):

A = d/dx, B = x, f = x2

A (Bf) = d/dx(x⋅ x2) = d/dx (x3) = 3 x2



B (Af) = x (d/dx x2) = 2 x2

In general, d/dx (xf) = f + x df/dx = (1 + x d/dx)f

So d/dx x = 1 + x d/dx

Since A & B are operators rather than numbers, they don’t
necessarily commute. If two operators A & B commute, then

AB = BA

and their commutator = 0:

[A,B] = AB -BA = 0

(Numbers always commute: 2⋅3 f = 3⋅2 f; [2,3] = 0)

What is the commutator of d/dx & x?

[d/dx,x] = ?

Since we have shown that d/dx x = 1 + x d/dx, then

[d/dx,x] = d/dx x - x d/dx = 1

What is the commutator of 3 & d/dx?

[3,d/dx] f = 3 d/dx f - d/dx 3 f = 3 d/dx f - 3 d/dx f = 0 = 

[d/dx,3]

Equality of operators: If Af = Bf, then A = B

Associative Law: A(BC) = (AB)C



Square of an operator: Apply the operator twice A2 = A A

(d/dx)2 = d/dx d/dx = d2/dx2

C = take the complex conjugate; f = eix

C f = (eix)* = e-ix

C2f = C (Cf) = C (e-ix) = (e-ix)* = eix = f

If C2f = f, then C2 = 1

Linear Operator:  A is a linear operator if

A(f + g) = Af + Ag

A(cf) = c (Af)

where f & g are functions & c is a constant.

Examples of linear operators:

d/dx (f + g) = df/dx + dg/dx

3(f + g) = 3f + 3g

Examples of nonlinear operators:

√(f + g) is not equal to √f + √g

inverse (f + g) = 1/(f + g) is not equal to 1/f + 1/g

Cautionary note:  When trying to determine the result of
operations with operators that include partial derivatives, always



using a function as a “place holder”.  For example, what is
(d/dx + x)2?

(d/dx + x)2f = (d/dx + x) (d/dx + x) f

= (d/dx + x) (df/dx + xf)

= d/dx (df/dx + xf) + x (df/dx + xf)

= d2f/dx2 + d/dx (xf) + x (df/dx) + x2f

= d2f/dx2 + x df/dx + f + x (df/dx) + x2f

= (d2/dx2 + 2x d/dx + 1 + x2)f

So (d/dx + x)2 = (d2/dx2 + 2x d/dx + 1 + x2)

Eigenfunction/Eigenvalue Relationship:

When an operator operating on a function results in a
constant times the function, the function is called an
eigenfunction of the operator & the constant is called the
eigenvalue

A f(x) = k f(x)

f(x) is the eigenfunction & k is the eigenvalue

Example: d/dx(e2x) = 2 e2x

e2x is the eigenfunction; 2 is the eigenvalue

How many different eigenfunctions are there for the operator
d/dx?

df(x)/dx = k f(x)



Rearrange the eq. to give:   df(x)/f(x) = k dx

and integrate both sides:  ∫ df(x)/f(x) =∫ k dx

to give: ln f = kx + C

f = ekx+C = ekx eC = ekx C’, C’ = eC

Since there are no restrictions on k, there are an infinite 
number of eigenfunctions of d/dx of this form.

C’ is an arbitrary constant.  Each choice of k leads to a 
different solution.  Each choice of C’ leads to multiples of 
the same solution.

Any eigenfunction of a linear operator can be multiplied 
by a constant and still be an eigenfunction of the operator. 
This means that if f(x) is an eigenfunction of A with 
eigenvalue k, then cf(x) is also an eigenfunction of A with 
eigenvalue k.  Prove it:

A f(x) = k f(x)

A [cf(x)] = c [Af(x)] = c [kf(x)] = k [cf(x)]

To specify the type of eigenfunction of d/dx more 
definitively, one can apply a physical constraint on the 
eigenfunction, as we did with the Particle in a Box:

c ekx must be finite as x → +∞

The most general k is a complex number: k = a + ib

Then c ekx = ce(a+ib)x = c eax eibx = c eax (cos bx + isin bx)



Since eax → ∞ for x → +∞, a must be 0

b can be any number

So c eibx is the correct eigenfunction of d/dx.

Relationship of Quantum Mechanical Operators to Classical
Mechanical Operators

In the 1-dimensional Schrödinger Eq.

[(-h2/2m) d2/dx2 + V(x)] ψ(x) = E ψ(x),

ψ(x) is the eigenfunction, E is the eigenvalue, & the Hamiltonian
operator is

(-h2/2m) d2/dx2 + V(x)

The Hamiltonian function was originally defined in classical
mechanics for systems where the total energy was conserved.
This occurs when the potential energy is a function of the
coordinates only.  this is the type of system to be studied with
quantum mechanics.

The classical Hamiltonian expressed Newton’s Eq. of Motion
such that the energy was a function of the coordinates (x,y,z) &
conjugate momentum (px, py, pz) where

px  = m vx vx = px /m

with m = mass & vx = velocity in the x-direction

Classical kinetic energy (KE) is defined as



KEx = (1/2) m vx
2 = px

2/(2m)

The classical Hamiltonian function is defined as the sum of the
kinetic energy (a function of momentum) & the potential energy
(a function of cordinates)

H = px
2/(2m) + V(x)

for a 1-dimensional system

Comparison to the Schrödinger Eq. shows that

(-h2/2m) d2/dx2 ↔ px
2/(2m)

Some Postulates of Quantum Mechanics:

(1) Postulate: For every physical property, there is a quantum
mechanical operator

(2) Postulate: To find the operator, write the classical mechanical
expression for the property

F(x,y,z,p x, py, pz)

 then substitute as follows:

Each coordinate operator, q, is replaced by multiplication by
the coordinate

operator q = q⋅ q=x,y,z

Each Cartesian component of momentum (px, py, pz) is
replaced by the operator

pq = (h/i) ∂/∂q = -i h ∂/∂q, q=x,y,z



So operator x = x⋅, etc. , px = -i h ∂/∂x, etc.

Then px
2 = (-i h ∂/∂x) 2 = (i) 2h2 ∂2/∂x2 = - h2 ∂2/∂x2

Potential energy functions are usually functions of the
coordinates, such as

V(x) = a x2

In general, the operator V(x) is replaced by multiplication by
V(x): V(x) ⋅

In summary

Classical mechanics (1-dimension)

H = T + V = KE + PE = px
2/(2m) + V(x)

Quantum mechanics (1-dimension)

H (operator) = T (operator) + V (operator)

= - (h2/2m) d2/dx2 + V(x)

(3) Postulate: The eigenvalues of a system are the only value a
property can have

H = Hamiltonian energy operator = - (h2/2m) d2/dx2 + V(x)

H ψi = E i ψi i=1,2,.. different states

Measurement of the energy of the system will result in one 
of the E i (eigenvalues, observables)



Example: Is Ψ(x,t) an eigenfunction of the px operator for the 1-
dimensional particle in a box?

 Ψ(x,t) = eiEt/h ψ(x) state function

ψ(x) = √(2/L) sin (nπx/L), En = n2h2/(8mL2)

px  = -i h∂ /∂x

For Ψ(x,t) to be an eigenfunction of px, must have

pxΨ(x,t) = c Ψ(x,t)

But d/dx sin (Ax) = A cos (Ax), so Ψ(x,t) is not an 
eigenfunction of px

Example: Is Ψ(x,t) an eigenfunction of the px
2 operator for the 1-

dimensional particle in a box?

px
2 Ψ(x,t) = - h2(d2/dx2) { eiEt/h  √(2/L) sin (nπx/L)}

= - h2 eiEt/h  √(2/L) (nπ/L) d/dx cos (nπx/L)

= h2 eiEt/h  √(2/L) (nπ/L) 2 sin (nπx/L)

= h2 (nπ/L) 2{ eiEt/h  √(2/L) sin (nπx/L)}

= h2 (nπ/L) 2 Ψ(x,t)

= h2 (n2/(4L 2) Ψ(x,t) Yes

Since n=1,2,.., the eigenvalue h2 (n2/(4L 2) is quantized.

Find the eigenfunctions of px.



px g(x) = k g(x)

-ih dg/dx = k g

dg/g = (ik/ h) dx

ln g = (ik/ h)x + C

g = A e(ik/ h)x

To keep g well-behaved as x → + ∞, k must be real.  So
the eigenvalues of px are all the real numbers k, - ∞ < k < ∞.

Forms of Operators in 3-Dimensions & More Than 1 Particle

One particle in 3-dimensions:

T = (-h2/2m) (∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2)

= (-h2/2m) ∇ 2 ∇ 2 is the Laplacian operator

H ψ(x,y,z) ={(-h2/2m)∇ 2 + V(x,y,z)}ψ(x,y,z)=E ψ(x,y,z)

The probability of finding the particle at time t in a region
bounded by (x,y,z) & (x+dx,y+dy,z+dz) is

ψ (x,y,z,t) 2dx dy dz dτ = dx dy dz

1 = ∫-∞∞∫-∞∞∫-∞∞ψ (x,y,z,t) 2dτ

n particles in 3-dimensions:

Particle i has mass mi, position (xi, yi, zi) and momentum 
(pxi, pyi, pzi)



T = (-h2/2m1) (∂2/∂x1
2 + ∂2/∂y1

2 + ∂2/∂z1
2) +

(-h2/2m2) (∂2/∂x2
2 + ∂2/∂y2

2 + ∂2/∂z2
2) + ... +

(-h2/2mn) (∂2/∂xn
2 + ∂2/∂yn

2 + ∂2/∂zn
2)

     n
=  Σ (-h2/2mi) ∇ i

2

    i=1

If V depends only on the Cartesian coordinates,

V = V (x1,y1,z 1, ..., xn,yn,zn)

Then ψ = ψ (x1,y1,z1, ..., xn,yn,zn) and

      n
H ψ = {Σ (-h2/2mi) ∇ i

2  + V (x1, ...,zn)} ψ = E ψ
     i=1

The probability of finding the first particle in a region
bounded by (x1,y1,z1) & (x1+dx1,y1+dy1,z1+dz1), the second
particle in a region bounded by (x2,y2,z2) &
(x2+dx2,y2+dy2,z2+dz2), etc. is

ψ (x1,y1,z1,..., xn,yn,zn, t) 2dτ

dτ = dx1dy1dz1... dxndyndzn

1 = ∫-∞∞...∫-∞∞ψ ( x1,y1,z1,..., xn,yn,zn, t) 2dτ

Particle in a 3-Dimensional Box:

V(x,y,z) = 0 0 < x < a, 0 < y < b, 0 < z < c

ψ = 0 outside the box, as in the 1-dimensional case



Inside the box: H ψ = E ψ

(-h2/2m) (∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2) = E ψ

Solve by Method of Separation of Variables:  Assume that
ψ is a product of functions, each depending only on one variable.
This is a reasonable assumption because the potential has no
cross terms (i.e. terms including products of variables)

ψ (x,y,z) = f(x) g(y) h(z)

H ψ = (-h2/2m) {g h d2f/dx2 + f h d2g/dy2 + f g d2h/dz2} =

E f(x) g(y) h(z)

Dividing both sides by f(x) g(y) h(z) gives:

(-h2/2m){ (1/f) d2f/dx2 + (1/g) d2g/dy2 + (1/h) d2h/dz2} = E

Can rewrite so that the left-hand side depends only on x & 
the right-hand side depends only on y & z:

(1/f) d2f/dx2 = - (1/g) d2g/dy2 - (1/h) d2h/dz2 - 2mE/ h2

But this means that the left & right-hand sides must be 
equal to a constant.

Let kx = (1/f) d2f/dx2

Could rewrite the eq. so that the left-hand side depends 
only on y, etc. and get

ky = (1/g) d2g/dy2 kz = (1/h) d2h/dz2



with kx + ky + kz = -2mE/ h2

Can redefine the energy components as

kx = -2mEx/ h
2, etc.

So that Ex  + Ey  + Ez  = E

and    (1/f) d2f/dx2 = -2mEx/ h
2, etc.

Then d2f/dx2 + 2mEx/ h
2 f = 0

d2g/dy2 + 2mEy/ h
2 g = 0

d2h/dz2 + 2mEz/ h
2 h = 0

Boundary Conditions: Functions must be zero at the walls.

f(x) = 0 at x = 0, a

g(y) = 0 at y = 0, b

h(z) = 0 at z = 0, c

So the solutions are the same as for the 1-dimensional
particle in a box:

f(x) = √(2/a) sin (nxπx/a), Ex = (nx
2h2)/(8ma2), nx=1,2,...

 g(y) = √(2/b) sin (nyπy/b), Ey = (ny
2h2)/(8mb2), ny=1,2,...

h(z) = √(2/c) sin (nzπz/c), Ez = (nz
2h2)/(8mc2), nz=1,2,...

E = Ex  + Ey  + Ez = (h2)/(8m) {nx
2/a2 + ny

2/b2+ nz
2/c2}



with the quantum numbers nx, ny, nz  varying 
independently

ψ(x,y,z) = √[8/(abc)]sin (nxπx/a) sin (nyπy/b) sin (nzπz/c)

Normalize ψ:

1 = ∫-∞∞∫-∞∞∫-∞∞ψ (x,y,z,t) 2dτ

= ∫0adx  f(x)  2 ∫0bdy  g(y)  2 ∫0cdz  h(z)  2

But each function is separately normalized

1 = ∫0adx  f(x)  2, etc.

so ψ is automatically normalized.

Consider a particle in a cube: a = b = c,

E = (h2)/(8m a2) {nx
2 + ny

2+ nz
2}

or {nx
2 + ny

2+ nz
2} = (E 8m a2)/ h2

Tabulate
nx  ny nz 111 211 121 112 122 221 212
{nx

2 + ny
2+ nz

2} 3 6 6 6 9 9 9

nx  ny nz 113 131 311 222  etc
{nx

2 + ny
2+ nz

2} 11 11 11 12

Degeneracy occurs when two or more independent
wavefunctions correspond to states with the same energy
eigenvalue



Each set of (nx  ny nz) corrsponds to an independent
wavefunction.  Since there are 3 independent wavefunctions
which give {nx

2 + ny
2+ nz

2}= 6, the corresponding energy level
is said to be 3-fold degenerate.

A rectangular box wouldn’t have degenerate energy levels.
Degeneracy is related to the symmetry of the system.

The degree of degeneracy of an energy level equals the number
of linearly independent wavefunctions corresponding to that
value of the energy.

A set of n functions is said to be linearly independent if no
member of the set can be written as a linear combination of the
others.

ψ1, ψ2, ψ3, etc are linearly independent if

c1ψ1 + c2ψ2 + ... + cnψn = 0 only if c1 = c2=...= cn= 0

Example: f1 = 3x, f2 = 5x2 - x,  f3 = x2

f2 = 5 f3 - f1/3 not linearly independent

Example: f1 = 1, f2 = x,  f3 = x2 linearly independent

Theorem: For any set of linearly independent eigenfunctions of
the Hamiltonian operator, (ψ1, ψ2,..., ψn),  with eigenvalue ω, any
linear combination of these eigenfunctions is also an
eigenfunction of H with eigenvalue ω.

Prove that for

If φ = c1 ψ1 + c2 ψ2 +...+ cn ψn ,



and H  ψi = ω ψi for i = 1,...,n

then H φ = ω φ

Proof: H φ = H (c1 ψ1 + c2 ψ2 +...+ cn ψn)

= c1 Hψ1 + c2 H ψ2 +...+ cn H ψn
= c1 ωψ1 + c2 ω ψ2 +...+ cn ω ψn

= ω (c1 ψ1 + c2 ψ2 +...+ cn ψn)

=  ω φ

Note that the degree of degeneracy of energy level ω is the
number of linearly independent eigenfunctions (n) belonging to
that level.

Average (or Expectation) Value of a Physical Property:

For a quantity that depends on discrete changes in the variables,
the average value is defined by a sum

F - the physical property
<F> - average value of F
N - the number of systems that are measured
fi - an observed value of F
nf - the number of times f is observed
f - a possible value of F

   N                               N

<F> = Σ fi /N = Σ nf f /N  i=1    i=1

Example:  In a class there are 9 (N=9) students.  On a quiz 
the grades are: 0 (f1), 20 (f2), 20 (f3), 60 (f4), 60 (f5), 80 



(f6), 80 (f7), 80 (f8), 100 (f9). There are 5 questions & each 
question is either all right (20 points) or all wrong (0 
points).  Calculate the average grade.

          N                               

<F> = Σ fi /N = (1/9) [0 + 20 + 20 + 60 + 60 + 80 + 80 +
   i=1

80 + 100 = 56

Alternatively,

                                     N
<F>  = Σ nf f /N

The f possible values of F (and nf number of times f is 
observed) are:

0 (1), 20 (2), 40 (0), 60 (20), 80 (3), 100 (1)

<F> = (1/9) [1⋅0 + 2⋅20 + 0⋅40 + 2⋅60 + 3⋅80 + 1⋅100]

= 56

Note that the average grade is not one of the possible or 
observed grades.

Since the probability, Pf, is defined as nf  /N, then <F> can 
be written as

<F> = Σ Pf f   f

For quantities that depend on variables that can take on a
continuous range of values,

 Pf = ψ 2 dτ Σ  →  ∫
       f



<F> = ∫ Ψ* F Ψ dτ, 

where Ψ is the time-dependent wavefunction

Since F is an operator, cannot write Ψ 2 F.
Must have Ψ* F Ψ, unless F is a function of 

coordinates only

∫ dτ is shorthand notation which means integrate over the 
correct variables & volume element.

For n particles in 3 dimensions, ∫ dτ =

∫-∞
∞ dx1  ∫-∞

∞ dy1  ∫-∞
∞ dz1 ... ∫-∞

∞ dxn  ∫-∞
∞ dyn  ∫-∞

∞ dzn

For 1 particle in 1 dimension, ∫ dτ = ∫-∞∞ dx

A stationary state is defined as one for which the 
probability density doesn’t vary in time

d Ψ 2 /dt = 0

For these states (& if F is independent of time), one can 
show that

Ψ*  F Ψ = ψ*  F ψ.

This is because

Ψ = e-iEt/h ψ

So Ψ* F Ψ = eiEt/h ψ* F e-iEt/h ψ



Since F is independent of time, F e-iEt/h ψ =  e-iEt/h F ψ,

and Ψ* F Ψ = eiEt/h e-iEt/h  ψ*  F ψ  = ψ*  F ψ.

The average value of a sum of operators equals the sum of the
average values of the operators:

< F + G > = <F> + <G>

But the average value of a product of operators is not equal to
the product of the average values of the operators:

< F ⋅ G >  is not equal to  <F> ⋅ <G>

Example:  Find <F> for F ψ = k ψ.

<F> =  ∫ ψ*  F ψ dτ = ∫ ψ*  k ψ dτ = k ∫ ψ*   ψ dτ

= k

since ∫ ψ*  ψ dτ = 1.


