THEOREMS OF QUANTUM MECHANICS
In order to develop methods to treat many-electron systems
(atoms & molecules), many of the theorems of quantum
mechanics are useful.
Useful Notation
The matrix element A is defined by
A..=[@, Aqg,d
= <@, [Alp,> bracket notation
= (@[ ALD,)
= <m[A[h>
The overlap integral between two functions is
[ O @, O = <@, [¢,> = <mlh>.
The complex conjugate of the overlap integral is
U on @, at] = [, @, dt = <nln>
= [<mh>]
Also <mn>" = <mm>,
Theorems

The average value of a physical guantity must be a real number.




Let A be the linear operator for the property A. Soif Ais
real, then

<A> = <A>

and A is said to be ldermitian Operator. For a Hermitian
Operator:

<A> =[P AP dt = <A>" = (" Ay dr)’
= (AY)" ot

Using the above relation, proyé Ag dt = g (Af)" drt.
If  =f+ cg & A is aHermitian operator, then

J(f+cg)” A(f + cg) du = (f + cg)[ A(f + cg)] dr.
Left-hand side § (f + cg)” A(f + cg) dr

=[(f +cg)A(f + cg) ar

=[(f+cg)Afdt+[(f +cg)Acg dr

=[fAfdt + ¢ g AfdT + cJ fAg dt + cC[ g Ag dt
By symmetry, the right-hand side

= [ f(Af) "dt +  g(Af)"dt + c [ f{Ag) "dt + cC[g(Ag)” dt
Since A is Hermitian

& [fAfdT = [ f(Af) 'dt & [ g Ag dt = [g(Ag)” df,

then, from the left- & right-hand sides:



c[gAfdT + ¢ fAg dt = ¢ g(Af)"dt + ¢ flAg) “dr.

Since this must hold for all ¢’s, it must hold for c=i or 1. Set c=1
to give one eqn., set c=i to give a second egn. Then add.

c=1:[ gAfdt + [ f'Ag dt = [ g(Af)"dt + [ f(Ag) "dt
c=i: -f gAfdT + [ f'Ag dt =[ g(Af) dt - [ f{Ag) dt; i* = -i
Add eqndl [f'Ag dt = <p[Alp;> = <g[ALp>" = [ g(Af) dr.
So for a Hermitian operator,
<QAD> = <QAD,> or <i(A[> = <j[AD>
or A=A
What Operators Are Hermitian?
Is V(X), the potential energy operator, Hermitian?
<QIV(X) P> =[."Q (V@) " dx

V' =V & Vis just a multiplicative operator (no square roots,
etc). So

[V @ dx =" V@ dx=[."@¢ V@ dx
<QV(X) lp,> Hermitian
Is p, = -ihd/ox Hermitian? (p* = ihd/ox)
<@Op, @>=[."@" (-ihd/ox)q@ dx = -iN_.,"@ @ dx



Integration by partg:uv’ = uv - fvu’
So -iff.."@ @ dx=-ih[g @0, -[."@ (@) dx]

Assumep & @ are well-behaved (i.e. =0) ato}so that the first
term on the right equals 0. Then

<@Op, @>=ih[.“@(@") dx=[,@(ihd/ox)¢ " dx
= [.°@(p) '@ dx = <pUp, [@>" Hermitian
(Prove: T, the kinetic energy operator, is Hermitian).
Then H =T + V is Hermitian.

PROVE: The eigenvalues of a Hermitian operator are real. (This
means they represent a physical quantity.)

For A@ = b @, show that b =h(b is real).

If A is Hermitian, therf @ A dt =[ @ (Aq@) dr.
Or,  J@'bpdt=[q(bp) di=[qbg dr
Then H@'odi=b[@q@ di=b[@ qd
Sob=5b

PROVE: The eigenfunctions of a Hermitian operator can be
chosen to be orthogonal.

Showthat, fBF=sF&BG=tG &tis not equal to s,
then <FIG> = 0.

Since B is Hermitian



<F OB OG> = <GB OF>
Or <FOtOG> =<GOsOF>
So t<FOG> =s<G OF> = s<FOG> = s<HIG>
(t-s) <AIG>=0
t not equal to §1 <FOG>=0
The requirement that t is not equal to s means that F & G
are independent eigenfunctions that have different
eigenvalues (i.e. they are non-degenerate)
PROVE: That in the case of degenerate eigenfunctions, we can

construct from these eigenfunctions a new eigenfunction that will
be orthogonal.

Remember: We have shown that any linear combination of
degenerate eigenfunctions corresponding to the same eigenvalue
Is also an eigenfunction with the same eigenvalue.

Llet BF=sF&BG=sG

Let @ & @, be the new eigenfunctions that will be
orthogonal.

Setgp, =F,p,= G + c F. Find c such thatpgg ,> = 0.
Procedure: Schmidt Orthogonalization

<[P ,>=<FOG + cF> = <HIG > + ¢ <FOF >

If <@, ,> =0, then c = - <EIG >/<FLF >



(Unless otherwise noted, assume all eigenfunctions are
orthogonal & normalized: gl > =0, =0 unless i = |p; = 1)

Expansion in terms of eigenfunctions:

We can use the eigenfunctions of a Hermitian operator to
describe an arbitrary well-behaved function. We can expand the
arbitrary function in terms of all (or@mplete set) of
eigenfunctions of the operator.

Let f be an arbitrary well-behaved functithat obeys the
same boundary conditions as the complete set @

f=2aq a, iIs an expansion coefficient

To find a, (formal solution):

<qU>=<qX ap>=2a<qU@>=2a0 =3

i~
i

Orf;Z <p Uf>q

So, the eigenfunctions of a Hermitian operator form a complete
orthonormal set with real eigenvalues

Eigenfunctions of Commuting Operators:

In Chapter 5 we statedhat a wavefunctioncan be
simultaneously an eigenfunction oivo different operators ff
those operators commute. Omore exactly, a necessary
condition forthe existence of a complete set siultaneous
eigenfunctions oftwo operators is that the operators commute
with each other. This means that the physical properties
associated with the operators can be measured simultaneoudly.



PROVE: If there exists a common complete set of
eigenfunctions fortwo linear operators, then the operators
commute.

Let @ be the complete set of eigenfunctions of the
operators A & B.

Ap=s@ &Bg=tqg

Show that [A,B] = 0 or (AB - BA)f = 0 where fis an
arbitrary function.

We can expand f in term®f the completeset of
eigenfunctions of A & B:

f:Z_cicg

So (AB - BA) f = (AB -BA)Z ¢, ¢ =3 ¢,(AB -BA) @
=2 ¢(AB@ -BAQ) =3 (At @ -B 'S @)

=2C(tiAQ-sBa)=2c(tisia-sitiq)
=2ctisi(@-@)=0

The important pointhere is that both operators must have a
commoncomplete set oéigenfunctions. The existence of just
one eigenfunction incommon is not enough to guarantee that
[A,B] = 0.



Look over the proofs for:

If A & B commute, wecan seleca commoncomplete set of
eigenfunctions for them.

If A is a Hermitian operator with eigenfunctignsuch that £ =
s &[AB]=0,then B =<@lB [ >=0 (snot =¢).
PARITY OPERATOR - a quantummechanicaloperator that
has no classical mechanical equivalent

M f(x,y,z) = f(-x,-y,-2)

The parityoperator,1, replaces the Cartesian coordinates with
their negative values.

Example:N (x*- z &Y) = (X¥*+ z &V)
[In Cartesiancoordinates]1 (x,y,z) = (-X,-y,-z). What about
spherical polarcoordinates? The allowed ranges for the
variables are:

0<r<w, 0<B<T 0<Q<2m

To move into the quadrant of (-x,-y,-z),

r-re-rm+q@0 - 1- 0]

Find the eigenvalues of the parity operator:

MNg=qcg
First, find M



N2 f(x,y,z) = N[ f(x,y,2)] = 0 f(-x,-y,-z) = f(x,y,z)
Sol? =1 (unit operator)
ThenM*g= M [Mgl=Ncg=6MNg =G66g=¢c"g
Soc’=1&c=+1

Find the eigenfunctions of the parity operator:

MNg=qgg
Or Tlg (x,y,z) =+ g(x,y,2)
And N g (X,y,2) = g(-X,"y,-2)

If c,= +1, g (X,y,2)
If c,=-1, g (X,y,2)

g (-x,-y,-z) & g is an even function
-g (-x,-y,-z) & g is an odd function

So theeigenfunctions off1 are all the possible well-behaved
even & odd functions.

The parity relationshipsare useful in constructing variational
wavefunctions & molecular wavefunctions (later chapters).

If M & H commute, we canselect a common set of
eigenfunctions.

H = -I?/(2m) ©%/0x3 + 0%/0y?+ 0%/dy?) + V
[H, M] = -h2/(2m)[0%ax2, M] - h(2m)[a%ady?, M]
- ?/(2m)[8%0z2, N] + [V, M]
Consider §7/ax?, M] = 84/0x> I - M 9%/9x>:



M 3%0x°Q(x,y,z) = 0/d(-X) 0/0(-X) ®(-X,-Y,-Z)
= [-0/0xX][-0/0X] ®(-X,-Y,-Z)
= 0%0x° p(-X,-y,-z) =0%0x* P(X,y,z)

So [p9/0x% N =0 = [p%ay? N] = [0%/9z% N]
Consider [V,[1] = VI - 1MV

NV(x,y,z) @x,y,z) =V(-X,-y,-Z)@(-X,-y,-2Z)

If V is an even function, V(X,y,z) = V(-X,-Y,-2)
NV(x,y,z) eix,y,z) =V(Xy,2)(-X,-y,-Z)
=V(x,y,2)Me(x,y,z); V & N commute.

Otherwise they don’t commute.

So [H,M] =0if Vis an even function. When V is even, we can
choose thap so that they are even or oddk. have definite
parity. This isused in theVariation Method to construct the
appropriate wavefunction.

MEASUREMENT & SUPERPOSITION OF STATES:

The basianethod is a schenfer calculatingthe probabilities of
various possible outcomes of a measurement.

Example: Ifthe statefunction, W(x,t) is known, theprobability
of finding the particle between x & x+dx & (x,t) O°dx.



In general, considethe property, GHow can wecalculate the
probability for eachpossibleresult ofthe measurement of G?
(Assume thereare N particles & three coordinateslet q
represent the position coordinates.)

G @(a) = g ¢(a)

The eigenfunctions ofiny Hermitian operatorform a complete

set (i.e. they are all the linearly independent eigenfunctions). The
@ form a complete setso we canexpand anyarbitrary
wavefunction in terms of them:

W(a.1) =2 ci(t@(a)
Require
[WWdr=1,

where d is the volume elemeribr the spatialcoordinateqgnot
time). Then

1=] Zici*(t)cp.*(q) Z c(hp(q) dr

=3¢ 2 ¢;J@ (a)@(q) dr
[ j

= 5[c [

Choose the ¢s so that 1 =2[c [



Since W(q,t) is a normalizedstate function, we can write the
average value of G as

<G> =[Y(qg,t) GW¥(q,t) dr

= J iZci*(t)cp.*(q) GZ ¢i(h)@(q) dr
=202 ¢;[e(q) Gg(a) dr

=2c; 2 ¢J9'(q) g ¢(q) dr



=2¢;Z ¢;g Jo (a) ¢(q) dr
=2c;Z ¢y g
= ZDC,DZQ,

We havepreviously definedhe averagevalue interms of the
probability of getting one of theeigenvalues, .gwhen G is

measuredi.e. When a property is measuradae canonly get

one of theeigenvalues as a resultNo other numbers are
possible.)

Then <G> =3 Py g,

where R is the probability of finding the eigenvalue o
P, = Oc,[0?

We can predict the result tife measurement & with certainty
only if all the ¢’s except one are 0O:

c, = 0, i not equal to k; gnot equal to zero.
ThenOc,[1* = 1 & the result of the measurement will heSg

P, =@, since all the other c’'s are 0.
So Y¥(q,t) =2 c()@(a)

gives the state function as a superposition of eigensigtes,G.
The coefficient, c;,, of @ in the expansion is related to the
probability offinding the eigenvalue gwhen G is measure(le.



The largerthe contribution of@ in the expansion mndicated by
the magnitude of,e thelarger theprobability of measuringhat
eigenvalue).

Calculate ¢

W(a.1) =2 ci(t@(a)

@ @Wd=/¢ (@) = c(On@)] d
=2c(0) J 9y (@) @(a) dr
=Z ¢ 8 = ¢ = <q @ > = probability amplitude

So the probability of measuringap a value of G is:
Oc; F=kq @ >F=0 @(q) ¥ (q.t) dlF

So, if we know W, we can predictthe outcome of the
measurement of G.

Example: G = p linear momentum
@=€"  g=k

We previously found the general form for the
wavefunction for a free particle in one dimension:

W = g iEh gv@mE) xih 4 g, g€t giV(2mE) x/h
= ¢, dkXhy ¢ gk

where ¢= a " c,= 3" k, =V(2mE), k = -V(2mE).



Solc,[F=0ae™F=0gq[FPeh g™ =Oa[P

= the probability of getting kwhen measuring G.
And Oc,[F=0a,F

= the probability of getting kvhen measuring G.

The probability of getting any other number when measuring G
IS zero.

SoW (qg,t) = €5y (q) is astationary state

& HY (q) = E, ¥ (q)

For a stationary state, the probabiliignsity does natepend on
time:

@ (g,t)* =0 (q) J*is independent of t.
If we take a superposition of stationary statis,

W=3cW =Xcethy,
IS not aneigenfunction of Hput is aneigenfunction othe time-
dependent Schrodinger Eq.

[-ih 0/ot + HIW =0

W doesn’t have aefinite energy because it s combination of
the Y ., each with energy E The probability of getting E,
when the energy is measured is



] Che-iEnt/hDZ =0 ChDZ

W is a nonstationarystate because therobability density
depends on t due to cross terms of the form

oiE th oE, th
Physicalexample: If asystem that is ira stationarystate is

exposed to radiation (i.e. a lasetd whosepotential variesvith
time) the state changes to a nonstationary state.



