THEOREMS OF QUANTUM MECHANICS

In order to develop methods to treat many-electron systems (atoms \& molecules), many of the theorems of quantum mechanics are useful.

Useful Notation

The matrix element A_{mn} is defined by

$$
\begin{aligned}
\mathrm{A}_{\mathrm{mn}} & =\int \phi_{\mathrm{m}}^{*} \mathrm{~A} \phi_{\mathrm{n}} \mathrm{~d} \tau \\
& =<\phi_{\mathrm{m}}\left|\mathrm{~A} \phi_{\mathrm{n}}\right\rangle \quad \text { bracket notation } \\
& =\left(\phi_{\mathrm{m}} \mid \mathrm{A} \phi_{\mathrm{n}}\right) \\
& =<\mathrm{m}|\mathrm{~A}| \mathrm{h}>
\end{aligned}
$$

The overlap integral between two functions is

$$
\int \phi_{\mathrm{m}}{ }^{*} \phi_{\mathrm{n}} \mathrm{~d} \tau=\left\langle\phi_{\mathrm{m}} \phi_{\mathrm{n}}\right\rangle=\langle\mathrm{m} \mid \mathrm{n}\rangle .
$$

The complex conjugate of the overlap integral is

$$
\begin{aligned}
& {\left[\int \phi_{\mathrm{m}}{ }^{*} \phi_{\mathrm{n}} \mathrm{~d} \tau\right]^{*}=\int \phi_{\mathrm{n}}{ }^{*} \phi_{\mathrm{m}} \mathrm{~d} \tau=<\mathrm{n} \mid \mathrm{m}>} \\
& \quad=[<\mathrm{m} \ln >]^{*}
\end{aligned}
$$

Also $<\mathrm{m}\left|\mathrm{m}>^{*}=<\mathrm{m}\right| \mathrm{m}>$.

Theorems

The average value of a physical quantity must be a real number.

Let A be the linear operator for the property A. So if A is real, then

$$
\langle\mathrm{A}\rangle=\langle\mathrm{A}\rangle^{*}
$$

and A is said to be a Hermitian Operator. For a Hermitian Operator:

$$
\begin{aligned}
\langle\mathrm{A}\rangle & =\int \psi^{*} \mathrm{~A} \psi \mathrm{~d} \tau=\langle\mathrm{A}\rangle^{*}=\left(\int \psi^{*} \mathrm{~A} \psi \mathrm{~d} \tau\right)^{*} \\
& =\int \psi(\mathrm{A} \psi)^{*} \mathrm{~d} \tau
\end{aligned}
$$

Using the above relation, prove $\int \mathrm{f}^{*} \mathrm{Ag} \mathrm{d} \tau=\int \mathrm{g}(\mathrm{Af})^{*} \mathrm{~d} \tau$.
If $\psi=\mathrm{f}+\mathrm{cg} \& \mathrm{~A}$ is a Hermitian operator, then

$$
\int(\mathrm{f}+\mathrm{cg})^{*} \mathrm{~A}(\mathrm{f}+\mathrm{cg}) \mathrm{d} \tau=\int(\mathrm{f}+\mathrm{cg})[\mathrm{A}(\mathrm{f}+\mathrm{cg})]^{*} \mathrm{~d} \tau .
$$

Left-hand side $=\int(\mathrm{f}+\mathrm{cg})^{*} \mathrm{~A}(\mathrm{f}+\mathrm{cg}) \mathrm{d} \tau$

$$
\begin{aligned}
& =\int\left(f^{*}+c^{*} \mathrm{~g}^{*}\right) \mathrm{A}(\mathrm{f}+\mathrm{cg}) \mathrm{d} \tau \\
& =\int\left(\mathrm{f}^{*}+\mathrm{c}^{*} \mathrm{~g}^{*}\right) \operatorname{Afd} \tau+\int\left(\mathrm{f}^{*}+\mathrm{c}^{*} \mathrm{~g}^{*}\right) \operatorname{Acg} \mathrm{d} \tau \\
& =\int \mathrm{f}^{*} A f d \tau+\mathrm{c}^{*} \int \mathrm{~g}^{*} A f d \tau+\mathrm{c} \int \mathrm{f}^{*} A g d \tau+\mathrm{c}^{*} \int \mathrm{~g}^{*} A g d \tau
\end{aligned}
$$

By symmetry, the right-hand side

$$
\left.=\int \mathrm{f}(\mathrm{Af})^{*} \mathrm{~d} \tau+\mathrm{c} \int \mathrm{~g}(\mathrm{Af})^{*} \mathrm{~d} \tau+\mathrm{c}^{*} \int \mathrm{f}^{\prime} \mathrm{Ag}\right)^{*} \mathrm{~d} \tau+\mathrm{cc}^{*} \int \mathrm{~g}(\mathrm{Ag})^{*} \mathrm{~d} \tau
$$

Since A is Hermitian

$$
\& \int \mathrm{f}^{*} \mathrm{Afd} \tau=\int \mathrm{f}(\mathrm{Af})^{*} \mathrm{~d} \tau \& \int \mathrm{~g}^{*} \mathrm{Ag} \mathrm{~d} \tau=\int \mathrm{g}(\mathrm{Ag})^{*} \mathrm{~d} \tau,
$$

then, from the left- \& right-hand sides:

$$
\left.c^{*} \int g^{*} A f d \tau+c \int f^{*} A g d \tau=c \int g(A f)^{*} d \tau+c^{*} \int f^{\prime} A g\right)^{*} d \tau .
$$

Since this must hold for all c's, it must hold for $\mathrm{c}=\mathrm{i}$ or 1 . Set $\mathrm{c}=1$ to give one eqn., set $\mathrm{c}=\mathrm{i}$ to give a second eqn. Then add.
$\left.\mathrm{c}=1: \int \mathrm{g}^{*} \mathrm{Afd} \tau+\int \mathrm{f}^{*} \mathrm{Ag} \mathrm{d} \tau=\int \mathrm{g}(\mathrm{Af})^{*} \mathrm{~d} \tau+\int \mathrm{f}^{\prime} \mathrm{Ag}\right)^{*} \mathrm{~d} \tau$
$\left.\mathrm{c}=\mathrm{i}:-\int \mathrm{g}^{*} \operatorname{Afd} \tau+\int \mathrm{f}^{*} \mathrm{Ag} \mathrm{d} \tau=\int \mathrm{g}(\mathrm{Af})^{*} \mathrm{~d} \tau-\int \mathrm{f}^{\prime} \mathrm{Ag}\right) \mathrm{d} \tau ; \mathrm{i}^{*}=-\mathrm{i}$
Add eqns. $\Rightarrow \int \mathrm{f}^{*} \mathrm{Ag} \mathrm{d} \tau=\left\langle\phi_{\mathrm{i}} \mid \mathrm{A} \phi_{\mathrm{j}}\right\rangle=\left\langle\phi_{\mathrm{j}}\right| \mathrm{A} \phi_{\mathrm{i}}{ }^{*}{ }^{*}=\int \mathrm{g}(\mathrm{Af})^{*} \mathrm{~d} \tau$.
So for a Hermitian operator,

$$
\left\langle\phi_{\mathrm{i}} \mid \mathrm{A} \phi_{\mathrm{j}}\right\rangle=\left\langle\phi_{\mathrm{j}}\right| \mathrm{A} \phi_{\mathrm{i}}>^{*} \text { or }\langle\mathrm{i} \mid \mathrm{A} \mathrm{j}\rangle=\langle\mathrm{j}| \mathrm{A}| \rangle^{*}
$$

or $\quad \mathrm{A}_{\mathrm{ij}}=\mathrm{A}_{\mathrm{ji}}{ }^{*}$

What Operators Are Hermitian?

Is $\mathrm{V}(\mathrm{x})$, the potential energy operator, Hermitian?

$$
<\phi_{\mathrm{j}} \mid \mathrm{V}(\mathrm{x}) \phi_{\mathrm{i}}>^{*}=\int_{-\infty}{ }^{\infty} \phi_{\mathrm{j}}\left(\mathrm{~V} \phi_{\mathrm{i}}\right)^{*} \mathrm{dx}
$$

$\mathrm{V}^{*}=\mathrm{V} \& \mathrm{~V}$ is just a multiplicative operator (no square roots, etc). So

$$
\begin{gathered}
\int_{-\infty}{ }^{\infty} \phi_{\mathrm{j}} \mathrm{~V}{ }^{*} \phi_{\mathrm{i}}{ }^{*} \mathrm{dx}=\int_{-\infty}{ }^{\infty} \phi_{\mathrm{j}} \mathrm{~V} \phi_{\mathrm{i}}{ }^{*} \mathrm{dx}=\int_{-\infty}{ }^{\infty} \phi_{\mathrm{i}}{ }^{*} \mathrm{~V} \phi_{\mathrm{j}} \mathrm{dx} \\
\left.<\phi_{\mathrm{i}} \mathrm{~V}(\mathrm{x}) \phi_{\mathrm{j}}\right\rangle \\
\text { Hermitian }
\end{gathered}
$$

Is $p_{x}=-i \underline{h} \partial / \partial x$ Hermitian? $\left(p_{x}^{*}=i \underline{h} \partial / \partial x\right)$

$$
\left\langle\phi_{\mathrm{i}}\right| p_{\mathrm{x}}\left|\phi_{\mathrm{j}}\right\rangle=\int_{-\infty}{ }^{\infty} \phi_{\mathrm{i}}^{*}(-\mathrm{i} \underline{\mathrm{~h}} \partial / \partial \mathrm{x}) \phi_{\mathrm{j}} \mathrm{dx}=-\mathrm{i} \underline{\int_{-\infty}}{ }^{\infty} \phi_{\mathrm{i}}^{*} \phi_{\mathrm{j}}^{\prime} \mathrm{dx}
$$

Integration by parts: $\int u v{ }^{\prime}=u v-\int v u$,
So $-\mathrm{ih} \int_{-\infty}{ }^{\infty} \phi_{\mathrm{i}}{ }^{*} \phi_{\mathrm{j}}{ }^{\prime} \mathrm{dx}=-\mathrm{ih}\left[\phi_{\mathrm{i}}{ }^{*} \phi_{\mathrm{j}} \mid{ }_{-\infty}{ }^{\infty}-\int_{-\infty}{ }^{\infty} \phi_{\mathrm{j}}\left(\phi_{\mathrm{i}}{ }^{*}\right)^{\prime} \mathrm{dx}\right]$
Assume $\phi_{i} \& \phi_{j}$ are well-behaved (i.e. $=0$) at $\pm \infty$, so that the first term on the right equals 0 . Then

$$
\begin{gathered}
\left\langle\phi_{\mathrm{i}} \mid \mathrm{p}_{\mathrm{x}} \phi_{\mathrm{j}}\right\rangle=\mathrm{in} \int_{-\infty}{ }^{\infty} \phi_{\mathrm{j}}\left(\phi_{\mathrm{i}}^{*}\right)^{\prime} \mathrm{dx}=\int_{-\infty}{ }^{\infty} \phi_{\mathrm{j}}(\mathrm{i} \underline{\mathrm{~h}} \partial / \partial \mathrm{x}) \phi_{\mathrm{i}}^{*} \mathrm{dx} \\
=\int_{-\infty}{ }^{\infty} \phi_{\mathrm{j}}\left(\mathrm{p}_{\mathrm{x}}\right)^{*} \phi_{\mathrm{i}}^{*} \mathrm{dx}=\left\langle\phi_{\mathrm{j}} \mid \mathrm{p}_{\mathrm{x}} \phi_{\mathrm{i}}\right\rangle^{*} \quad \text { Hermitian }
\end{gathered}
$$

(Prove: T, the kinetic energy operator, is Hermitian).
Then $\mathrm{H}=\mathrm{T}+\mathrm{V}$ is Hermitian.
PROVE: The eigenvalues of a Hermitian operator are real. (This means they represent a physical quantity.)

For $\mathrm{A} \phi_{\mathrm{i}}=\mathrm{b} \phi_{\mathrm{i}}$, show that $\mathrm{b}=\mathrm{b}^{*}(\mathrm{~b}$ is real).
If A is Hermitian, then $\int \phi_{i}{ }^{*} A \phi_{i} d \tau=\int \phi_{i}\left(A \phi_{i}\right)^{*} d \tau$.
Or, $\quad \int \phi_{\mathrm{i}}{ }^{*} \mathrm{~b} \phi_{\mathrm{i}} \mathrm{d} \tau=\int \phi_{\mathrm{i}}\left(\mathrm{b} \phi_{\mathrm{i}}\right)^{*} \mathrm{~d} \tau=\int \phi_{\mathrm{i}} \mathrm{b}^{*} \phi_{\mathrm{i}}{ }^{*} \mathrm{~d} \tau$
Then $\mathrm{b} \int \phi_{\mathrm{i}}{ }^{*} \phi_{\mathrm{i}} \mathrm{d} \tau=\mathrm{b}^{*} \int \phi_{\mathrm{i}} \phi_{\mathrm{i}}{ }^{*} \mathrm{~d} \tau=\mathrm{b}^{*} \int \phi_{\mathrm{i}}{ }^{*} \phi_{\mathrm{i}} \mathrm{d} \tau$

So $b=b^{*}$
PROVE: The eigenfunctions of a Hermitian operator can be chosen to be orthogonal.

Show that, if $B F=s F \& B G=t G \& t$ is not equal to s, then $\langle\mathrm{F} \mid \mathrm{G}\rangle=0$.

Since B is Hermitian

$$
\langle\mathrm{F}| \mathrm{B}|\mathrm{G}\rangle=\langle\mathrm{G}| \mathrm{B} \mid \mathrm{F}>^{*}
$$

Or $\langle\mathrm{F}| \mathrm{t}|\mathrm{G}\rangle=\langle\mathrm{G}| \mathrm{s}|\mathrm{F}\rangle^{*}$
So $\mathrm{t}\langle\mathrm{F} \mid \mathrm{G}\rangle=\mathrm{s}^{*}\langle\mathrm{G} \mid \mathrm{F}\rangle{ }^{*}=\mathrm{s}^{*}\langle\mathrm{~F} \mid \mathrm{G}\rangle=\mathrm{s}\langle\mathrm{F} \mid \mathrm{G}\rangle$

$$
(\mathrm{t}-\mathrm{s})\langle\mathrm{F} \mid \mathrm{G}\rangle=0
$$

t not equal to $\mathrm{s} \Rightarrow\langle\mathrm{F} \mid \mathrm{G}\rangle=0$
The requirement that t is not equal to s means that F \& G are independent eigenfunctions that have different eigenvalues (i.e. they are non-degenerate)

PROVE: That in the case of degenerate eigenfunctions, we can construct from these eigenfunctions a new eigenfunction that will be orthogonal.

Remember: We have shown that any linear combination of degenerate eigenfunctions corresponding to the same eigenvalue is also an eigenfunction with the same eigenvalue.

Let $B F=s F \& B G=s G$
Let $\phi_{1} \& \phi_{2}$ be the new eigenfunctions that will be orthogonal.

Set $\phi_{1}=\mathrm{F}, \phi_{2}=\mathrm{G}+\mathrm{c} F$. Find c such that $\left\langle\phi_{1} \mid \phi_{2}\right\rangle=0$.
Procedure: Schmidt Orthogonalization
$\left\langle\phi_{1} \mid \phi_{2}\right\rangle=\langle\mathrm{F} \mid \mathrm{G}+\mathrm{cF}\rangle=\langle\mathrm{F} \mid \mathrm{G}\rangle+\mathrm{c}\langle\mathrm{F} \mid \mathrm{F}\rangle$
If $\left\langle\phi_{1} \mid \phi_{2}\right\rangle=0$, then $\mathrm{c}=-\langle\mathrm{F} \mid \mathrm{G}\rangle /\langle\mathrm{F} \mid \mathrm{F}\rangle$
(Unless otherwise noted, assume all eigenfunctions are orthogonal \& normalized: $\left\langle\phi_{\mathrm{i}} \mid \phi_{\mathrm{j}}\right\rangle=\delta_{\mathrm{ij}}=0$ unless $\mathrm{i}=\mathrm{j} ; \delta_{\mathrm{ii}}=1$)

Expansion in terms of eigenfunctions:
We can use the eigenfunctions of a Hermitian operator to describe an arbitrary well-behaved function. We can expand the arbitrary function in terms of all (or a complete set) of eigenfunctions of the operator.

Let f be an arbitrary well-behaved function that obeys the same boundary conditions as the complete set ϕ_{i}

$$
\mathrm{f}=\sum_{\mathrm{i}} \mathrm{a}_{\mathrm{i}} \phi_{\mathrm{i}} \quad \mathrm{a}_{\mathrm{i}} \text { is an expansion coefficient }
$$

To find a_{i} (formal solution):
$\left\langle\phi_{\mathrm{j}} \mid \mathrm{f}\right\rangle=\left\langle\phi_{\mathrm{j}} \mid \Sigma \underset{\mathrm{i}}{\mathrm{a}_{\mathrm{i}}} \phi_{\mathrm{i}}\right\rangle=\Sigma \underset{\mathrm{i}}{\mathrm{a}_{\mathrm{i}}}\left\langle\phi_{\mathrm{j}} \mid \quad \phi_{\mathrm{i}}\right\rangle=\Sigma \underset{\mathrm{i}}{\mathrm{a}_{\mathrm{i}}} \delta_{\mathrm{ji}}=\mathrm{a}_{\mathrm{j}}$
$\operatorname{Or} \mathrm{f}=\Sigma\left\langle\phi_{\mathrm{i}} \mid \mathrm{f}\right\rangle \phi_{\mathrm{i}}$
So, the eigenfunctions of a Hermitian operator form a complete orthonormal set with real eigenvalues

Eigenfunctions of Commuting Operators:
In Chapter 5 we stated that a wavefunction can be simultaneously an eigenfunction of two different operators if those operators commute. Or, more exactly, a necessary condition for the existence of a complete set of simultaneous eigenfunctions of two operators is that the operators commute with each other. This means that the physical properties associated with the operators can be measured simultaneously.

PROVE: If there exists a common complete set of eigenfunctions for two linear operators, then the operators commute.

Let ϕ_{i} be the complete set of eigenfunctions of the operators A \& B.
$A \phi_{i}=s_{i} \phi_{i} \& B \phi_{i}=t_{i} \phi_{i}$
Show that $[A, B]=0$ or $(A B-B A) f=0$ where f is an arbitrary function.

We can expand f in terms of the complete set of eigenfunctions of A \& B:

$$
\mathrm{f}=\Sigma \mathrm{c}_{\mathrm{i}} \phi_{\mathrm{i}}
$$

So $(\mathrm{AB}-\mathrm{BA}) \mathrm{f}=(\mathrm{AB}-\mathrm{BA}) \Sigma \mathrm{c}_{\mathrm{i}} \phi_{\mathrm{i}}=\Sigma \mathrm{c}_{\mathrm{i}}(\mathrm{AB}-\mathrm{BA}) \phi_{\mathrm{i}}$
$=\sum_{\mathrm{i}} \mathrm{c}_{\mathrm{i}}\left(\mathrm{AB} \phi_{\mathrm{i}}-\mathrm{BA} \phi_{\mathrm{i}}\right)=\sum_{\mathrm{I}} \mathrm{c}_{\mathrm{i}}^{\mathrm{i}}\left(\mathrm{At}_{\mathrm{i}} \phi_{\mathrm{i}}-\mathrm{B} \mathrm{s}_{\mathrm{i}} \phi_{\mathrm{i}}\right)$
$=\sum_{\mathrm{i}} \mathrm{c}_{\mathrm{i}}\left(\mathrm{t}_{\mathrm{i}} \mathrm{A} \phi_{\mathrm{i}}-\mathrm{s}_{\mathrm{i}} \mathrm{B} \phi_{\mathrm{i}}\right)=\sum_{\mathrm{i}} \mathrm{c}_{\mathrm{i}}\left(\mathrm{t}_{\mathrm{i}} \mathrm{s}_{\mathrm{i}} \phi_{\mathrm{i}}-\mathrm{s}_{\mathrm{i}} \mathrm{t}_{\mathrm{i}} \phi_{\mathrm{i}}\right)$
$=\sum_{i} \mathrm{c}_{\mathrm{i}} \mathrm{t}_{\mathrm{i}} \mathrm{s}_{\mathrm{i}}\left(\phi_{\mathrm{i}}-\phi_{\mathrm{i}}\right)=0$
The important point here is that both operators must have a common complete set of eigenfunctions. The existence of just one eigenfunction in common is not enough to guarantee that $[\mathrm{A}, \mathrm{B}]=0$.

Look over the proofs for:
If A \& B commute, we can select a common complete set of eigenfunctions for them.

If A is a Hermitian operator with eigenfunction ϕ_{i} such that $A \phi_{i}=$ $\mathrm{s}_{\mathrm{i}} \phi_{\mathrm{i}} \&[\mathrm{~A}, \mathrm{~B}]=0$, then $\mathrm{B}_{\mathrm{ij}}=\left\langle\phi_{\mathrm{i}}\right| \mathrm{B}\left|\phi_{\mathrm{j}}\right\rangle=0\left(\mathrm{~s}_{\mathrm{i}}\right.$ not $\left.=\mathrm{s}_{\mathrm{j}}\right)$.

PARITY OPERATOR - a quantum mechanical operator that has no classical mechanical equivalent

$$
\Pi \mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{f}(-\mathrm{x},-\mathrm{y},-\mathrm{z})
$$

The parity operator, Π, replaces the Cartesian coordinates with their negative values.

Example: $\Pi\left(x^{2}-\mathrm{ze}^{\mathrm{Ay}}\right)=\left(\mathrm{x}^{2}+\mathrm{ze} \mathrm{e}^{-\mathrm{Ay}}\right)$
[In Cartesian coordinates, Π (x,y,z) $=(-\mathrm{x},-\mathrm{y},-\mathrm{z})$. What about spherical polar coordinates? The allowed ranges for the variables are:

$$
0 \leq \mathrm{r} \leq \infty, 0 \leq \theta \leq \pi, 0 \leq \phi \leq 2 \pi
$$

To move into the quadrant of (-x,-y,-z),

$$
\mathrm{r} \rightarrow \mathrm{r}, \phi \rightarrow \pi+\phi, \theta \rightarrow \pi-\theta]
$$

Find the eigenvalues of the parity operator:

$$
\Pi g_{i}=c_{i} g_{i}
$$

First, find Π^{2} :

$$
\Pi^{2} f(x, y, z)=\Pi[\Pi f(x, y, z)]=\Pi f(-x,-y,-z)=f(x, y, z)
$$

So $\Pi^{2}=1$ (unit operator)
Then $\Pi^{2} g_{i}=\Pi\left[\Pi g_{i}\right]=\Pi c_{i} g_{i}=c_{i} \Pi g_{i}=c_{i} c_{i} g_{i}=c_{i}{ }^{2} g_{i}$
So $\mathrm{c}_{\mathrm{i}}{ }^{2}=1 \& \mathrm{c}_{\mathrm{i}}= \pm 1$
Find the eigenfunctions of the parity operator:

$$
\Pi g_{i}=c_{i} g_{i}
$$

Or $\quad \Pi g_{i}(x, y, z)= \pm g_{i}(x, y, z)$
And $\Pi g_{i}(x, y, z)=g_{i}(-x,-y,-z)$
If $c_{i}=+1, g_{i}(x, y, z)=g_{i}(-x,-y,-z) \& g$ is an even function If $c_{i}=-1, g_{i}(x, y, z)=-g_{i}(-x,-y,-z) \& g$ is an odd function

So the eigenfunctions of Π are all the possible well-behaved even \& odd functions.

The parity relationships are useful in constructing variational wavefunctions \& molecular wavefunctions (later chapters).

If $\Pi \& H$ commute, we can select a common set of eigenfunctions.

$$
\begin{aligned}
& \mathrm{H}=-\underline{h}^{2} /(2 \mathrm{~m})\left(\partial^{2} / \partial \mathrm{x}^{2}+\partial^{2} / \partial y^{2}+\partial^{2} / \partial y^{2}\right)+\mathrm{V} \\
& {[\mathrm{H}, \Pi]=-\underline{h}^{2} /(2 \mathrm{~m})\left[\partial^{2} / \partial \mathrm{x}^{2}, \Pi\right]-\underline{h}^{2} /(2 \mathrm{~m})\left[\partial^{2} / \partial y^{2}, \Pi\right]} \\
& \quad-\underline{h}^{2} /(2 \mathrm{~m})\left[\partial^{2} / \partial \mathrm{z}^{2}, \Pi\right]+[\mathrm{V}, \Pi]
\end{aligned}
$$

Consider $\left[\partial^{2} / \partial x^{2}, \Pi\right]=\partial^{2} / \partial x^{2} \Pi-\Pi \partial^{2} / \partial x^{2}:$

$$
\begin{aligned}
\Pi \partial^{2} & / \partial x^{2} \phi(\mathrm{x}, \mathrm{y}, \mathrm{z})=\partial / \partial(-\mathrm{x}) \partial / \partial(-\mathrm{x}) \phi(-\mathrm{x},-\mathrm{y},-\mathrm{z}) \\
& =[-\partial / \partial \mathrm{x}][-\partial / \partial \mathrm{x}] \phi(-\mathrm{x},-\mathrm{y},-\mathrm{z}) \\
& =\partial^{2} / \partial \mathrm{x}^{2} \phi(-\mathrm{x},-\mathrm{y},-\mathrm{z})=\partial^{2} / \partial \mathrm{x}^{2} \Pi \phi(\mathrm{x}, \mathrm{y}, \mathrm{z})
\end{aligned}
$$

So $\left[\partial^{2} / \partial \mathrm{x}^{2}, \Pi\right]=0=\left[\partial^{2} / \partial \mathrm{y}^{2}, \Pi\right]=\left[\partial^{2} / \partial \mathrm{z}^{2}, \Pi\right]$
Consider [V, П] = VП - ПV

$$
\Pi V(x, y, z) \phi(x, y, z)=V(-x,-y,-z) \phi(-x,-y,-z)
$$

If V is an even function, $\mathrm{V}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{V}(-\mathrm{x},-\mathrm{y},-\mathrm{z})$

$$
\begin{aligned}
& \Pi \mathrm{V}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \phi(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{V}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \phi(-\mathrm{x},-\mathrm{y},-\mathrm{z}) \\
& =\mathrm{V}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \Pi \phi(\mathrm{x}, \mathrm{y}, \mathrm{z}) ; \mathrm{V} \& \Pi \text { commute. }
\end{aligned}
$$

Otherwise they don't commute.
So $[H, \Pi]=0$ if V is an even function. When V is even, we can choose the ψ so that they are even or odd, i.e. have definite parity. This is used in the Variation Method to construct the appropriate wavefunction.

MEASUREMENT \& SUPERPOSITION OF STATES:

The basic method is a scheme for calculating the probabilities of various possible outcomes of a measurement.

Example: If the state function, $\Psi(\mathrm{x}, \mathrm{t})$ is known, the probability of finding the particle between $\mathrm{x} \& \mathrm{x}+\mathrm{dx}$ is $|\Psi(\mathrm{x}, \mathrm{t})|^{2} \mathrm{dx}$.

In general, consider the property, G: How can we calculate the probability for each possible result of the measurement of G? (Assume there are N particles \& three coordinates; Let q represent the position coordinates.)

$$
G \phi_{i}(q)=g_{i} \phi_{i}(q)
$$

The eigenfunctions of any Hermitian operator form a complete set (i.e. they are all the linearly independent eigenfunctions). The ϕ_{i} form a complete set, so we can expand any arbitrary wavefunction in terms of them:

$$
\Psi(\mathrm{q}, \mathrm{t})=\sum_{\mathrm{i}} \mathrm{c}_{\mathrm{i}}(\mathrm{t}) \phi_{\mathrm{i}}(\mathrm{q})
$$

Require

$$
\int \Psi * \Psi \mathrm{~d} \tau=1
$$

where $\mathrm{d} \tau$ is the volume element for the spatial coordinates (not time). Then

$$
\begin{aligned}
& 1=\int \sum_{\mathrm{i}} \mathrm{c}_{\mathrm{i}}^{*}(\mathrm{t}) \phi_{\mathrm{i}}^{*}(\mathrm{q}) \sum_{\mathrm{j}} \mathrm{c}_{\mathrm{j}}(\mathrm{t}) \phi_{\mathrm{j}}(\mathrm{q}) \mathrm{d} \tau \\
& =\Sigma \mathrm{c}_{\mathrm{i}}^{*} \Sigma \mathrm{c}_{\mathrm{j}} \int \phi_{\mathrm{i}}^{*}(\mathrm{q}) \phi_{\mathrm{j}}(\mathrm{q}) \mathrm{d} \tau \\
& =\sum_{\mathrm{i}} \mathrm{c}_{\mathrm{i}}^{*} \sum_{\mathrm{j}} \mathrm{c}_{\mathrm{j}} \delta_{\mathrm{ij}} \\
& =\sum_{\mathrm{i}}\left|\mathrm{c}_{\mathrm{i}}\right|^{2}
\end{aligned}
$$

Choose the c_{i} 's so that $1=\sum_{i}\left|\mathrm{c}_{\mathrm{i}}\right|^{2}$

Since $\Psi(\mathrm{q}, \mathrm{t})$ is a normalized state function, we can write the average value of G as

$$
\begin{aligned}
<\mathrm{G}> & =\int \Psi(\mathrm{q}, \mathrm{t})^{*} \mathrm{G} \Psi(\mathrm{q}, \mathrm{t}) \mathrm{d} \tau \\
& =\int \sum_{\mathrm{i}} \mathrm{c}_{\mathrm{i}}^{*}(\mathrm{t}) \phi_{\mathrm{i}}^{*}(\mathrm{q}) \mathrm{G} \sum_{\mathrm{j}} \mathrm{c}_{\mathrm{j}}(\mathrm{t}) \phi_{\mathrm{j}}(\mathrm{q}) \mathrm{d} \tau \\
& =\sum_{\mathrm{i}} \mathrm{c}_{\mathrm{i}}^{*} \sum_{\mathrm{j}}^{*} \mathrm{c}_{\mathrm{j}} \int \phi_{\mathrm{i}}^{*}(\mathrm{q}) \mathrm{G} \phi_{\mathrm{j}}(\mathrm{q}) \mathrm{d} \tau \\
& =\sum_{\mathrm{i}} \mathrm{c}_{\mathrm{i}}^{*} \sum_{\mathrm{j}} \mathrm{c}_{\mathrm{j}} \int \phi_{\mathrm{i}}^{*}(\mathrm{q}) \mathrm{g}_{\mathrm{j}} \phi_{\mathrm{j}}(\mathrm{q}) \mathrm{d} \tau
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i} c_{i}^{*} \sum_{j} c_{j} g_{j} \int \phi_{i}^{*}(q) \phi_{j}(q) d \tau \\
& =\sum_{i} c_{i}^{*} \sum_{j} c_{j} g_{j} \delta_{i j} \\
& =\sum_{i}\left|c_{i}\right|^{2} g_{i}
\end{aligned}
$$

We have previously defined the average value in terms of the probability of getting one of the eigenvalues, g_{i}, when G is measured (i.e. When a property is measured, we can only get one of the eigenvalues as a result. No other numbers are possible.)

Then $\langle\mathrm{G}\rangle=\sum_{\mathrm{i}} \mathrm{P}_{\mathrm{s}_{\mathrm{i}}} \mathrm{g}_{\mathrm{i}}$,
where $P_{g_{i}}$ is the probability of finding the eigenvalue g_{i}. So

$$
\mathrm{P}_{\mathrm{g}_{\mathrm{i}}}=\left|\mathrm{c}_{\mathrm{i}}\right|^{2}
$$

We can predict the result of the measurement of G with certainty only if all the c_{i} 's except one are 0 :
$c_{i}=0$, i not equal to $\mathrm{k} ; \mathrm{c}_{\mathrm{k}}$ not equal to zero.
Then $\left|c_{k}\right|^{2}=1 \&$ the result of the measurement will be $g_{k} \&$ $\psi_{\mathrm{k}}=\phi_{\mathrm{k}}$ since all the other c's are 0.

So $\quad \Psi(\mathrm{q}, \mathrm{t})=\sum_{\mathrm{i}} \mathrm{c}_{\mathrm{i}}(\mathrm{t}) \phi_{\mathrm{i}}(\mathrm{q})$
gives the state function as a superposition of eigenstates, ϕ_{i}, of G. The coefficient, c_{i}, of ϕ_{i} in the expansion is related to the probability of finding the eigenvalue g_{i} when G is measured (i.e.

The larger the contribution of ϕ_{i} in the expansion - indicated by the magnitude of c_{i} - the larger the probability of measuring that eigenvalue).

Calculate c_{i} :

$$
\begin{aligned}
& \Psi(\mathrm{q}, \mathrm{t})=\sum_{\mathrm{i}} \mathrm{c}_{\mathrm{i}}(\mathrm{t}) \phi_{\mathrm{i}}(\mathrm{q}) \\
& \begin{array}{l}
\int \phi_{\mathrm{j}}^{*}(\mathrm{q}) \Psi \mathrm{d} \tau=\int \phi_{\mathrm{j}}^{*}(\mathrm{q})\left[\sum_{\mathrm{i}} \mathrm{c}_{\mathrm{i}}(\mathrm{t}) \phi_{\mathrm{i}}(\mathrm{q})\right] \mathrm{d} \tau \\
\quad=\sum_{\mathrm{i}} \mathrm{c}_{\mathrm{i}}(\mathrm{t}) \int \phi_{\mathrm{j}}^{*}(\mathrm{q}) \phi_{\mathrm{i}}(\mathrm{q}) \mathrm{d} \tau \\
\quad=\sum_{\mathrm{i}} \mathrm{c}_{\mathrm{i}}(\mathrm{t}) \delta_{\mathrm{ji}}=\mathrm{c}_{\mathrm{j}}=\left\langle\phi_{\mathrm{j}} \mid \Psi\right\rangle=\text { probability amplitude }
\end{array}
\end{aligned}
$$

So the probability of measuring g_{j} as a value of G is:

$$
\left|\mathrm{c}_{\mathrm{j}}\right|^{2}=\left|\left\langle\phi_{\mathrm{j}} \mid \Psi\right\rangle\right|^{2}=\left|\int \phi_{\mathrm{j}}^{*}(\mathrm{q}) \Psi(\mathrm{q}, \mathrm{t}) \mathrm{d} \tau\right|^{2}
$$

So, if we know Ψ, we can predict the outcome of the measurement of G.

Example: $\mathrm{G}=\mathrm{p}_{\mathrm{x}}$ linear momentum

$$
\phi_{i}=e^{\mathrm{ik} \times \mathrm{x} / \mathrm{h}} ; \quad \mathrm{g}_{\mathrm{i}}=\mathrm{k}_{\mathrm{i}}
$$

We previously found the general form for the wavefunction for a free particle in one dimension:

$$
\begin{aligned}
\Psi= & a_{1} e^{-i E t / h} e^{i v(2 m E) x / h}+a_{2} e^{-i E t / h} e^{-i v(2 m E) x / h} \\
= & c_{1} e^{i k x / h}+c_{2} e^{i k k_{2} / h},
\end{aligned}
$$

where $c_{1}=a_{1} e^{-i E t / h}, c_{2}=a_{2} e^{-i E t / h}, k_{1}=\sqrt{ }(2 m E), k_{2}=-\sqrt{ }(2 m E)$.

So $\left|c_{1}\right|^{2}=\left|a_{1} e^{- \text {EEth }}\right|^{2}=\left|a_{1}\right|^{2} e^{\text {iEth }} e^{-i E t h}=\left|a_{1}\right|^{2}$
$=$ the probability of getting k_{1} when measuring G .
And $\left|\mathrm{c}_{2}\right|^{2}=\left|\mathrm{a}_{2}\right|^{2}$
$=$ the probability of getting k_{2} when measuring G .
The probability of getting any other number when measuring G is zero.

So $\Psi_{n}(\mathrm{q}, \mathrm{t})=\mathrm{e}^{-\mathrm{iE}}{ }^{\mathrm{t} . t / \mathrm{h}} \Psi_{\mathrm{n}}(\mathrm{q})$ is a stationary state

$$
\& H \psi_{n}(q)=E_{n} \psi_{n}(q)
$$

For a stationary state, the probability density does not depend on time:

$$
\left|\Psi_{\mathrm{n}}(\mathrm{q}, \mathrm{t})\right|^{2}=\left|\psi_{\mathrm{n}}(\mathrm{q})\right|^{2} \text { is independent of } \mathrm{t} .
$$

If we take a superposition of stationary states, Ψ_{n},

$$
\Psi=\sum_{\mathrm{n}} \mathrm{c}_{\mathrm{n}} \Psi_{\mathrm{n}}=\sum_{\mathrm{n}} \mathrm{c}_{\mathrm{n}} \mathrm{e}^{-\mathrm{iE} \mathrm{E} t / \mathrm{h}} \Psi_{\mathrm{n}}
$$

is not an eigenfunction of H , but is an eigenfunction of the timedependent Schrödinger Eq.

$$
[-\mathrm{ih} \partial / \partial \mathrm{t}+\mathrm{H}] \Psi=0
$$

Ψ doesn't have a definite energy because it is a combination of the ψ_{n}, each with energy E_{n}. The probability of getting E_{n} when the energy is measured is

$$
\left|\mathrm{c}_{\mathrm{n}} \mathrm{e}^{-\mathrm{iE} \mathrm{E}_{\mathrm{n}} / \mathrm{h}}\right|^{2}=\left|\mathrm{c}_{\mathrm{n}}\right|^{2}
$$

Ψ is a nonstationary state because the probability density depends on t due to cross terms of the form

$$
\mathrm{e}^{-\mathrm{i} \mathrm{E}_{\mathrm{n}} / \mathrm{h}} \mathrm{e}^{\mathrm{i} \mathrm{E}_{\mathrm{n}} \mathrm{t} / \mathrm{h}}
$$

Physical example: If a system that is in a stationary state is exposed to radiation (i.e. a laser field whose potential varies with time) the state changes to a nonstationary state.

