PROBLEM SET SOLUTIONS

CHAPTER 2, Levine, Quantum Chemistry, 5th Ed.

2.2 (A) $s_1 = s_2 = s \& y = e^{sx}$ is a solution of y'' + p y' + q y = 0. Verify that $y = x e^{sx}$ is also a solution.

If
$$y = x e^{sx}$$
, then $y' = e^{sx} + xs e^{sx} = (1 + xs) e^{sx}$ &
 $y'' = s e^{sx} + (1+xs) s e^{sx} = (2 + xs) s e^{sx}$

So y" + p y' + q y =
$$(2 + xs) s e^{sx} + p (1 + xs) e^{sx} + q x e^{sx}$$

= $(2s + xs^2 + p + psx + qx) e^{sx}$
= $[xs^2 + (2 + px)s + (p + qx)] e^{sx}$

From the auxiliary eq.: $s^2 + ps + q = 0 \Rightarrow s = -p/2 \pm 0.5 \sqrt{p^2 - 4q} = s_1, s_2$

If
$$s_1 = s_2$$
, then $p^2 - 4q = 0$ & $p = \sqrt{(4q)}$ or $q = p^2/4$. Also $s = -p/2$

So
$$[xs^2 + (2 + px)s + (p + qx)] e^{sx}$$

=
$$[x p^2/4 + 2(-p/2) + px (-p/2) + (p + x p^2/4)] e^{-px/2}$$

=
$$[x (p^2/4 - p^2/2 + p^2/4) - p + p] e^{-px/2}$$

$$=0$$

2.2 (B) Solve y'' - 2y' + y = 0.

$$p = -2$$
, $q = 1$, $y = e^{sx} \implies s^2 + p + q = 0$

$$\Rightarrow$$
 s = 0.5 [-p $\pm \sqrt{(p^2 - 4q)}$] = 0.5 [-(-2) $\pm \sqrt{(4 - 4)}$] = 1

$$y = x e^{sx} = x e^{x}, y' = e^{x} + x e^{x} = (1 + x)e^{x}$$

$$y'' = e^x + (1 + x)e^x = (2 + x)e^x$$

Verify that y'' - 2y' + y = 0:

$$(2 + x)e^{x} - 2(1 + x)e^{x} + xe^{x} = 2 + x - 2 - 2x + x = 0$$

- 2.5 Particle with quantum number n in box of length L
- (A) Determine the probability of finding the particle in the left quarter of the box.

Region I:
$$x < 0$$
, $V = \infty$

Region II:
$$0 < x < L, V = 0$$

Region III:
$$x > L$$
, $V = \infty$

In the left quarter of the box:
$$0 < x < L/4$$

Probability of finding the particle in left quarter = $\int_0^{L/4} |\psi_{II}|^2 dx$

$$= \int_0^{L/4} [\sqrt{(2/L)} \sin (n\pi x/L)]^2 dx$$

=
$$(2/L) \int_0^{L/4} [\sin(n\pi x/L)]^2 dx$$

=
$$(2/L) \left[x/2 - (L/4n\pi) \sin (2n\pi x/L) \right]_0^{L/4}$$
 (See (A.2) in Table A.5 in Appendix)

=
$$(2/L)$$
 [L/8 - $(L/4n\pi)$ sin $(2n\pi L/(L4))$ - $0 + 0$]

$$= 1/4 - (1/(2n\pi)) \sin(n\pi/2)$$

Probability depends on the quantum # n.

(B) For what value of n would the probability be a maximum?

n	Probability
1	$1/4 - 1/(2\pi)$
2	$1/4 - 1/(4\pi) (0) = 1/4$
3	$1/4 - 1/(6\pi) (-1) = 1/4 + 1/(6\pi)$
	MAXIMUM
4	$1/4 - 1/(8\pi) (0) = 1/4$
5	$1/4 - 1/(10\pi) (1) = 1/4 - 1/(10\pi)$
6	$1/4 - 1/(12\pi) (0) = 1/4$
7	$1/4 - 1/(14\pi) (-1) = 1/4 +$
	$1/(14\pi)$
8	$1/4 - 1/(16\pi) (0) = 1/4$
Etc.	Etc.

- (C) As $n \to \infty$, Probability $\to 1/4$ $(1/\infty)$ (oscillating function) = 1/4
- (D) Bohr Correspondence Principal: quantum mechanics approaches classical mechanics in the limit of large quantum number.

- 2.7 Model the electron in an atom (or molecule) as a particle in a box of diameter of the atom (or molecule).
- (A) For an electron in a box of length 1 Angstrom calculate the separation between the lowest two levels.

$$L=1$$
 Angstrom, 1 J = 1 kg m²/s², 1 Angstrom = 10^{-8} cm = 10^{-10} m, 10^{-20} m² = 1 Angstrom²

$$\Delta E = E_2 - E_1 = (2^2 - 1^2) (h^2/(8mL^2))$$

= 3 $(6.63 \times 10^{-34} \text{ J s})^2 / [8 (9.11 \times 10^{-31} \text{ kg}) (1.0 \text{ Angstrom})^2 (10^{-8} \text{ cm}/1.0 \text{ Angstrom})^2 (10^{-2} \text{ m}/1 \text{ cm})^2]$

$$= 1.81 \times 10^{-17} \text{ J}$$

(B) Calculate the wavelength of a photon corresponding to a transition between these two levels.

$$\Delta E = h \ v = h \ c \ / \lambda \Rightarrow \lambda = h \ c / \ \Delta E = (6.63 \text{x} 10^{-34} \ \text{Js}) \ (3.00 \text{x} 10^8 \ \text{m/s}) / \ (1.81 \text{x} 10^{-17} \ \text{J})$$

$$= 10.99 \times 10^{-9} \text{m}$$

= 10.99 nm

(C) This wavelength is in the ultraviolet (uv) portion of the electromagnetic spectrum.

2.15 A crude model of pi electrons in a conjugated molecule is as particles in a box of length slightly longer than the conjugated chain. The Pauli Exclusion Principle states that no more than 2 electrons (with opposite spins) can occupy one box level. For butadiene, CH₂=CHCH=CH₂, take the box length as 7.0 Angstroms & use this model to estimate the wavelength of light absorbed when a pi electron is excited from the highest occupied to the lowest unoccupied box level. (The experimental value is 217 nm.)

There are 2 double bonds, or 4 pi electrons. If only 2 electrons are allowed to occupy one box level, then levels n=1 & n=2 will be occupied (with n=2 being the highest occupied level), & level n=3 will be the lowest unoccupied level. So an electron will be excited from level n=2 to level n=3:

$$\Delta E = E_3 - E_2 = (3^2 - 2^2) (h^2/(8mL^2))$$

 $= 5 (6.63 \times 10^{-34} \text{ Js})^2 / [8 (9.11 \times 10^{-31} \text{ kg}) (7.0 \text{ Angstrom})^2 10^{-20} \text{ m}^2$

/1 Angstrom²]

 $=6.15 \times 10^{-19} \text{ J}$

 $\Delta E = h \nu = h c / \lambda \Rightarrow \lambda = h c / \Delta E = (6.63x10^{-34} Js) (3.00x10^8 m/s) / \Delta E = h \nu = h c / \lambda \Rightarrow \lambda = h c / \Delta E = (6.63x10^{-34} Js) (3.00x10^8 m/s) / \Delta E = h \nu = h c / \lambda \Rightarrow \lambda = h c / \Delta E = (6.63x10^{-34} Js) (3.00x10^8 m/s) / \Delta E = (6.63x10^{-34} Js) / \Delta E = (6.63x10^$

 $(6.15x10^{-19} \text{ J})$

 $=3.23 \times 10^{-7} \text{ m } (10^9 \text{nm}/1\text{m})$

= 323 nm