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These notes are intended as an addition to the lectures given in class.
They are NOT designed to replace the actual lectures. Some of the notes will
contain less information then in the actual lecture, and some will have extra
info; some of the graphics is deliberately unfinished, so that we have what to
do in class.. Not all formulas which will be needed for exams are contained in
these notes. Also, these notes will NOT contain any up to date organizational
or administrative information (changes in schedule, assignments, etc.) but
only physics. If you notice any typos - let me know at vitaly@oak.njit.edu. I
will keep all notes in a single file - each time you can print out only the added
part. Make sure the file is indeed updated, there is a date indicating the
latest modification. There is also a Table of Contents, which is automatically
updated.
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Chapter 1

Review: Mechanics A

Dr. Vitaly A. Shneidman, Lectures on Mechanics, NJIT.

1.1 Vectors

A vector is characterized by the following three properties:

• has a magnitude

• has direction (Equivalently, has several components in a selected system
of coordinates).

• obeys certain addition rules (”rule of parallelogram”).

This is in contrast to a scalar, which has only magnitude and which is not
changed when a system of coordinates is rotated.

How do we know which physical quantity is a vector, which is a scalar and
which is neither? From experiment (of course). Examples of scalars are time,
distance, mass, kinetic energy. Examples of vectors are the displacement,
velocity and force.

1.1.1 Single vector

Consider a vector ~a with components ax and ay (let’s talk 2D for a while).
There is an associated scalar, namely the magnitude (or length) given by the
Pythagoras theorem

a ≡ |~a| =
√

a2
x + a2

y (1.1)

3



4 CHAPTER 1. REVIEW: MECHANICS A

Note that for a different system of coordinates with axes x′, y′ the compo-
nents ax′ and ay′ can be very different, but the length in eq. (1.1) , obviously,
will not change, which just means that it is a scalar.

Another operation allowed on a single vector is multiplication by a scalar.
Note that the physical dimension (”units”) of the resulting vector can be

different from the original, as in ~F = m~a.

1.1.2 Two vectors: addition

For two vectors, ~a and ~b one can define their sum ~c = ~a+~b with components

cx = ax + bx , cy = ay + by (1.2)

The magnitude of ~c then follows from eq. (1.1). Note that physical dimen-

sions of ~a and ~b must be identical.

1.1.3 Two vectors: scalar (dot) product

If ~a and ~b make an angle φ with each other, their scalar (dot) product is

defined as ~a ·~b = ab cos (φ), or in components

~a ·~b = axbx + ayby (1.3)

A different system of coordinates can be used, with different individual com-
ponents but with the same result. For two orthogonal vectors ~a ·~b = 0. The
main application of the scalar product is the concept of work ∆W = ~F ·∆~r,
with ∆~r being the displacement. Force which is perpendicular to displace-
ment does not work!
Example: Prove the Pythagoras theorem c2 = a2 + b2.

1.2 Kinematics and Dynamics

Point mass (”point”) - a body whose size is insignificant in a given problem.
(Can be as large as a planet). Position is given by ~r(t) with

∆~r = ~r (t2) − ~r (t1) (1.4)

known as displacement.
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1.2.1 Kinematics

Velocity

~v =
d~r

dt
(1.5)

Speed: v = |~v|
Acceleration:

~a =
d~v

dt
(1.6)

Examples:

• 1 dimensional motion with constant acceleration (in x-direction)

v = v0 + at (1.7)

x = x0 + v0t +
1

2
at2 (1.8)

x − x0 =
v2 − v2

0

2a
(1.9)

• circular motion with constant speed

|~a| = const =
v2

r
(1.10)

1.2.2 Dynamics

2d Law:

~F = m~a (1.11)

3d Law:

~F12 = −~F21 (1.12)
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1.2.3 Work and potential energy

W =

∫

2

1

~F · d~r (1.13)

Fo special (”conservative”) forces the shape of the path does not matter,
and we can introduce potential energy U (~r)

W = −∆U = U1 − U2 (1.14)

Examples:

• Gravitational (with ~g ' const)

U = mgh (1.15)

• Elastic (with F = −kx)

U =
1

2
kx2 (1.16)

1.2.4 Kinetic energy, work-energy theorem and energy
conservation

Kinetic energy:

K =
1

2
mv2 (1.17)

work-energy theorem:

∆K = W (1.18)

(any force). For conservative force:

E = K + U = const (1.19)

the energy conservation.
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1.3 Momentum

~p = m~v (1.20)

2d Law:

d~p

dt
= ~F (1.21)

System of particles

~P = ~p1 + ~p2 + . . . (1.22)

d~P

dt
= ~Fext (1.23)

(external forces only!). If Fext = 0:

~P = const (1.24)

i.e. conservation of momentum.

1.4 Center of mass

~Rcm =
1

M

∑

i

~rimi , M =
∑

i

mi (1.25)

~Vcm = ~P/M (1.26)

which is constant if Fext = 0.
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Chapter 2

Kinematics of rotation

2.1 Radian measure of an angle

see Fig. 2.1. Arc length

l = rθ (2.1)

if θ is measured in radians.

Figure 2.1: Angle of 1 rad ≈ 57.3o . For this angle the length of the circular
arc exactly equals the radius. The full angle, 360o , is 2π radians.

9



10 CHAPTER 2. KINEMATICS OF ROTATION

2.2 Angular velocity

Notations: ω (omega)
Units: rad/s
Definition:

ω =
dθ

dt
≈ ∆θ

∆t
(2.2)

Conversion from revolution frequency (ω = const):
Example: find ω for 45 rev/min

45
rev

min
= 45

2π rad

60 s
≈ 4.7

rad

s

2.2.1 Connection with linear velocity and centripetal
acceleration for circular motion

v =
dl

dt
=

d(rθ)

dt
= ωr (2.3)

ac = v2/r = ω2r (2.4)

2.3 Angular acceleration

Definition:

α =
dω

dt
(2.5)

Units:
[α] = rad/s2

2.3.1 Connection with tangential acceleration

aτ =
dv

dt
= r

dω

dt
= rα (2.6)

(very important for rolling problems!)
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2.4 Rotation with α = const

Direct analogy with linear motion:

x → θ , v → ω , a → α

ω = ω0 + αt (2.7)

θ = θ0 + ω0t +
1

2
αt2 (2.8)

θ − θ0 =
ω2 − ω2

0

2α
(2.9)

Example: a free spinning wheel makes N revolutions in t seconds, and
stops. Find α. Solution: in formulas

ω = 0 , θ − θ0 = 2πN

Thus,
ω0 = −αt

and

2πN = −1

2
αt2 , . . .



12 CHAPTER 2. KINEMATICS OF ROTATION



Chapter 3

Kinetic Energy of Rotation and
Rotational Inertia

Dr. Vitaly A. Shneidman, Lectures on Mechanics, NJIT.

3.1 The formula K = 1/2 Iω2

For any point mass

Ki =
1

2
miv

2

i (3.1)

For a solid rotating about an axis

vi = ωri (3.2)

with ri being the distance from the axis and ω, the angular velocity being
the same for every point. Thus, the full kinetic energy is

K =
∑

i

Ki =
1

2
ω2
∑

i

mir
2

i ≡ 1

2
Iω2 (3.3)

Here I, the rotational inertia, is the property of a body, independent of ω
(but sensitive to selection of the rotational axis):

I =
∑

i

mir
2

i (3.4)

Or, for continuos distribution of masses:

13
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I =

∫

dl λr2 (3.5)

for a linear object with linear density λ (in kg/m);
or

I =

∫

dS σr2 (3.6)

for a flat object (S-area) with planar density σ (in kg/m2),
or

I =

∫

dV ρr2 (3.7)

for a 3D object (V -volume) with density ρ (in kg/m3)

3.2 Rotational Inertia: Examples

3.2.1 Dumbell

Two identical masses m at x = ±a/2. Rotation in the xy plane about the
z-axis

I = 2 · m(a/2)2 = ma2/2 =
1

4
Ma2 , M = m + m (3.8)

3.2.2 Hoop

Hoop of mass M , radius R in the xy plane, center at the origin. Rotation in
the xy plane about the z-axis.

Linear density

λ = M/(2πR)

Ihoop =

∫

2πR

0

dl λR2 = MR2 (3.9)

(the same for hollow cylinder about the axis)
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3.2.3 Rod

Uniform rod of mass M between at x = ±l/2. Rotation in the xy plane
about the z-axis through the center of mass

Linear density

λ = M/l

Thus,

I =

∫ l/2

−l/2

dx λx2 = 2λ ·
∫ l/2

0

dx x2 = 2λ
1

3
(l/2)3

Or,

Irod =
Ml2

12
(3.10)

3.2.4 Disk

Figure 3.1: Uniform disk (short cylinder) rotating about the z-axis.
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Uniform disk of mass M , radius R in the xy plane, center at the origin.
Rotation in the xy plane about the z-axis - see fig. 3.1.

Planar density

σ = M/
[

πR2
]

Elementary area

dS = 2πr dr

Idisk =

∫ R

0

dr 2πrσr2 =
1

2
MR2 (3.11)

(the same for solid cylinder about the axis).

3.3 Parallel axis theorem

I = Icm + MD2 (3.12)

with Icm being rotational inertia about a parallel axis passing through the
center of mass and D - distance to that axis.

Proof:

~Rcm =
1

M

∑

i

~rimi

Introduce

~r′i = ~ri − ~Rcm

with
∑

i

~r′imi = 0

and

Icm =
∑

i

mi (r
′

i)
2

Now

I =
∑

i

mi

(

~r′i + ~D
)2

= Icm + MD2 + 2 ~D ·
∑

i

~r′imi

where the last sum is zero, which completes the proof.
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3.4 Rotational Inertia: standard Summary

and more complicated objects

graphics in a separate file graphics3.4
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Chapter 4

Conservation of energy

Dr. Vitaly A. Shneidman, Lectures on Mechanics, NJIT.

K + U = const (4.1)

where K is the total kinetic energy (translational and rotational for all bodies)
and U is total potential energy.

4.1 Atwood machine

Figure 4.1: Atwood machine. Mass M (left) is almost balanced by a slightly
smaller mass m. Pulley has rotational inertia I and radius R.

Suppose larger mass goes distance h down starting from rest. Find final
velocity v.

19



20 CHAPTER 4. CONSERVATION OF ENERGY

• energy conservation

1

2
(M + m)v2 +

1

2
Iω2 = (M − m)gh

• constrains

v = ωR

Thus

v2 = 2gh
M − m

M + m + I/R2

Acceleration from

h = v2/2a

which gives

a = g
M − m

M + m + I/R2

Note the limit: m = 0, I = 0 gives a = g (free fall).

4.2 Rolling

Figure 4.2: Rolling down of a body with mass m, rotational inertia I and
radius R.

Suppose the body rolls vertical distance h starting from rest. Find final
velocity v.

• energy conservation
1

2
mv2 +

1

2
Iω2 = mgh
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• constrains
v = ωR

Thus

v2 = 2gh
1

1 + I/ (mR2)

Acceleration from
h = v2/2l , l = h/ sin θ

which gives

a = g sin θ
1

1 + I/ (mR2)

Note the limit: I = 0 gives a = g sin θ.
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Chapter 5

Torque

Dr. Vitaly A. Shneidman, Lectures on Mechanics, NJIT.

5.1 Definition

Consider a point mass m at a fixed distance r from the axis of rotation.
Only motion in tangential direction is possible. Let Ft be the tangential
component of force. The torque is defined as

τ = Ftr = Fr sin φ (5.1)

with φ being the angle between the force and the radial direction. r sin φ is
the ”lever arm”. Counterclockwise torque is positive, and for several forces
torques add up.

Units:
[τ ] = N · m

5.2 2d Law for rotation

Start with a single point mass. Consider the tangential projection of the 2d
Law

Ft = mat

Now multiply both sides by r and use at = αr with α the angular acceleration.

τ = mr2α

23
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For a system of particles mi each at a distance ri and the same α
∑

τ = Iα (5.2)



Chapter 6

Application of τ = Iα

Dr. Vitaly A. Shneidman, Lectures on Mechanics, NJIT.

Example. How long will it take to open a heavy, freely revolving door by
90 degrees starting from rest, if a constant force F , which is perpendicular
to the door, is applied at a distance r away from the hinges? Make some
reasonable approximations about parameters of the door, F and r.
Solution:
From

θ = 1/2 αt2

t =
√

2θ/α =

√

π
I

Fr

For I can use 1/3 Ml2, with l being the horizontal dimension. Using, e.g.
M = 30 kg, F = 30 N , r = l = 1 m one gets t ∼ 1 s, which is reasonable.

6.1 Rotating rod

(from textbook).

α = τ/I = (1/2 Mgl)

/(

1

3
Ml2

)

=
3

2
g/l

Linear acceleration of the end:

a = αl =
3

2
g > g (!)

25



26 CHAPTER 6. APPLICATION OF τ = Iα

6.1.1 Rotating rod with a point mass m at the end.

Will it go faster or slower?
Solution:

same as above, but

I → 1/3 Ml2 + ml2 , τ → 1/2 Mgl + mgl

Thus,

α =
3

2

g

l

1 + 2m/M

1 + 3m/M

Linear acceleration of the end:

α =
3

2
g
1 + 2m/M

1 + 3m/M

(which is smaller than before, but still larger than g)

6.2 Atwood machine revisited.

?
m~g

?
M~g

6

~T1
6~T2

Figure 6.1: Atwood machine. Mass M (left) is almost balanced by a slightly
smaller mass m. Pulley has rotational inertia I and radius R.

Let T1 and T2 be tensions in left string (connected to larger mass M) and
in the right string, respectively.
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• 2d Law(s) for each body (and for the pulley with τ = (T1 − T2) R)

• constrains a = αR

From 2d Law(s):

Mg − T1 = Ma , T2 − mg = ma , (T1 − T2) = Iα/R

Add all 3 together to get (with constrains)

(M − m)g = (M + m)a + Iα/R = (M + m + I/R2)a

which gives

a = g
M − m

M + m + I/R2

and α = a/R. What if need tension?

T1 = Mg − ma < Mg , T2 = mg + ma > mg

6.3 Rolling down incline revisited.

Figure 6.2: Rolling down of a body with mass m, rotational inertia I and
radius R. Three forces act on the body: ~f - static friction at the point of
contact, up the plane; ~N - normal reaction, perpendicular to the plain at
the point of contact and m~g is applied to CM. Note that onlly friction has a
torque with respect to CM.

• 2d Law(s) for linear and for rotational accelerations with torque τ =
fR (f - static friction)
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• constrains a = αR

2d Law (linear)
~f + ~N + m~g = m~a

or with x-axis down the incline

−f + mg sin θ = ma

2d Law (rotation)
fR = Iα

or with constrain
f = aI/R2

Thus,
−aI/R2 + mg sin θ = ma

or

a = g sin θ
1

1 + I/mR2

the same as from energy conservation.



Chapter 7

Vectors and angular
momentum

Dr. Vitaly A. Shneidman, Lectures on Mechanics, NJIT.

7.1 Vector (cross) product

At this point we must proceed to the 3D space. Important here is the cor-
rect system of coordinates, as in Fig. 7.1. You can rotate the system of
coordinates any way you like, but you cannot reflect it in a mirror (which

would switch right and left hands). If ~a and ~b make an angle φ with each

other, their vector (cross) product ~c = ~a ×~b has a magnitude c = ab sin(φ).

The direction is defined as perpendicular to both ~a and ~b using the following
rule: curl the fingers of the right hand from ~a to ~b in the shortest direction
(i.e., the angle must be smaller than 180o). Then the thumb points in the ~c
direction. Check with Fig. 7.2.

Changing the order changes the sign, ~b × ~a = −~a × ~b. In particular,
~a × ~a = ~0. More generally, the cross product is zero for any two parallel
vectors.

7.1.1 Unit-vector representation

Suppose now a system of coordinates is introduced with unit vectors î, ĵ and
k̂ pointing in the x, y and z directions, respectively. First of all, if î, ĵ, k̂ are
written ”in a ring”, the cross product of any two of them equals the third

29
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x

y

z

x

y x

y

zz

Figure 7.1: The correct, ”right-hand” systems of coordinates. Checkpoint -
curl fingers of the RIGHT hand from x (red) to y (green), then the thumb
should point into the z direction (blue). (Note that axes labeling of the
figures is outside of the boxes, not necessarily near the corresponding axes;
also, for the figure on the right the origin of coordinates is at the far end of
the box, if it is hard to see in your printout).

one in clockwise direction, i.e.

î × ĵ = k̂ , ĵ × k̂ = î , k̂ × î = ĵ

, etc. (check this for Fig. 7.1 !). Together with

î × î = î × î = î × î = 0

and distributive law, this allows to find any vector product.
Example. ~a = 3î − 4ĵ , ~b = î + 2ĵ

~a ×~b =
(

3̂i − 4ĵ
)

×
(

î + 2ĵ
)

= 3 · 2 î × ĵ − 4ĵ × î

Note that self-products like î × î are ignored. The 1st term gives 6k̂, the 2d

gives −4 ·
(

−k̂
)

= 4k̂. Thus,

~a ×~b = 10k̂

Note that if both vectors are in the x − y plane their cross product is in
z-direction.
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Figure 7.2: Example of a cross product ~c (blue) = ~a (red) × ~b (green). (If
you have no colors, ~c is vertical in the example, ~a is along the front edge to
lower right, ~b is diagonal).

More generally, the cross product is now expressed as a 3-by-3 determi-
nant

~a ×~b =

∣

∣

∣

∣

∣

∣

î ĵ k̂
ax ay az

bx by bz

∣

∣

∣

∣

∣

∣

= î

∣

∣

∣

∣

ay az

by bz

∣

∣

∣

∣

− ĵ

∣

∣

∣

∣

ax az

bx bz

∣

∣

∣

∣

+ k̂

∣

∣

∣

∣

ax ay

bx by

∣

∣

∣

∣

(7.1)

The two-by-two determinants can be easily expanded.

7.2 Angular velocity as a vector

Direct ~ω allong the axis of rotation using the right-hand rule.

Example. Find ~ω for the spinning Earth.
Solution: Direction - from South to North pole. Magnitude:

ω =
2π rad

24 · 3600 s
' . . .

rad

s

Now for any point of a rotating solid

~v = ~ω × ~r
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7.3 Torque as a vector

~τ = ~r × ~F (7.2)

7.4 Angular momentum

7.4.1 Single point mass

~L = ~r × ~p (7.3)

with ~p = m~v, the momentum.

Example. Find ~L for circular motion.
Solution: Direction - along the axis of rotation (as ~ω !). Magnitude:

L = mvr sin 90o = mr2ω

or

~L = mr2~ω (7.4)

7.4.2 System of particles

~L =
∑

i

~ri × ~pi (7.5)

7.4.3 Rotating symmetric solid

If axis if rotation is also an axis of symmetry for the body

L =
∑

i

mir
2

i ω = Iω (7.6)

or
~L = I~ω
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7.5 2d Law for rotation in terms of ~L

Start with
~F =

d~p

dt

Then

~τ =
d~L

dt
(7.7)
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Chapter 8

Conservation of angular
momentum

Dr. Vitaly A. Shneidman, Lectures on Mechanics, NJIT. Start with

~τ =
d~L

dt

If ~τ = 0 (no net external torque)

~L = const (8.1)
valid everywhere (from molecules and below, to stars and beyond).

For a closed mechanical system, thus

E = const , ~P = const , ~L = const

For any closed system (with friction, inelastic collisions, break up of ma-
terial, chemical or nuclear reactions, etc.)

E 6= const , ~P = const , ~L = const

8.1 Examples

8.1.1 Free particle

~L(t) = ~r(t) × m~v

35
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with ~v = const and
~r(t) = ~r0 + ~vt

Thus, from ~v × ~v = 0

~L(t) = (~r0 + ~vt) × m~v = ~r0 × m~v = ~L(0)

8.1.2 Student on a rotating platform

(in class demo) Let I be rotational inertia of student+platform, and

I ′ ' I + 2Mr2

the rotational inertia of student+platform+extended arms with dumbbels (r
is about the length of an arm). Then,

L = Iω = I ′ω′

or

ω′ = ω
I

I ′
= ω

1

1 + 2Mr2/I

8.1.3 Chewing gum on a disk

An m = 5 g object is dropped onto a uniform disc of rotational inertia I =
2 · 10−4 kg · m2 rotating freely at 33.3 revolutions per minute. The object
adheres to the surface of the disc at distance r = 5 cm from its center. What
is the final angular velocity of the disc?

Solution. Similarly to previous example

L = Iω = I ′ω′

or

ω′ = ω
I

I ′
= ω

I

I + mr2
= ω

1

1 + mr2/I

8.1.4 Measuring speed of a bullet

To measure the speed of a fast bullet a mass-less thin rod with the length L
with two wood blocks with the masses M at each end, is used. The whole
system can rotate in a horizontal plane about a vertical axis through its
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center. The rod is at rest when a small bullet of mass m and velocity v is
fired into one of the blocks. The bullet remains stuck in the block after it
hits. Immediately after the collision, the whole system rotates with angular
velocity ω. Find v.

Solution - in class

8.1.5 Rotating star (white dwarf)

A uniform spherical star collapses to 0.3% of its former radius. If the star
initially rotates with the frequency 1 rev/day what would the new rotation
frequency be?

Solution - in class
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Chapter 9

Equilibrium

Dr. Vitaly A. Shneidman, Lectures on Mechanics, NJIT.

9.1 General conditions of equilibrium

∑

~Fi = 0 (9.1)

∑

~τi = 0 (9.2)

Theorem. In equilibrium, torque can be calculated about any point.
Proof. Let ~ri determine positions of particles in the system with respect

to point O. Selecting another point as a reference is equivalent to a shift of
every ~ri by the same ~ro . Then,

~τnew =
∑

i

(~ri + ~ro) × ~Fi = ~τ + ~ro ×
∑

i

~Fi = ~τ

9.2 Center of gravity

Theorem. For a uniform field ~g the center of gravity coinsides with the
COM.

39
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Proof. Torque due to gravity is

τg =
∑

i

~ri × mi~g =

(

∑

i

mi~ri

)

× ~g = M ~RCM × ~g

9.3 Examples

9.3.1 Seesaw

Figure 9.1: Two twins, masses m and m (left) against their dad with mass
M . Force of gravity on the seesaw and reaction of the fulcrum are not shown
since they produce no torque.

If 2d, d and D are distances from the fulcrum for each of the twins and
the father,

mg · 2d + mgd = MgD

or
3md = MD
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Note that used only torque condition of equilibrium. If need reaction from
the fulcrum ~N use the force condition

~N + (2m + M + Mseesaw)~g = 0

9.3.2 Horizontal beam

Figure 9.2: Horizontal beam of mass M and length L supported by a blue
cord making angle θ with horizontal. Only forces with non-zero torque about
the pivot (tension ~T -blue- and gravity M~g -black) are shown.

Cancellation of torques gives

TL sin θ = Mg
L

2

or
T = Mg/2 sin θ
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Note: if you try to make the cord horizontal, it will snap (T → ∞). For
θ → π/2 one has T → Mg/2, as expected. The force condition will allow to
find reaction from the pivot.

9.3.3 Ladder against a wall

Figure 9.3: Blue ladder of mass M and length L making angle θ with hori-
zontal. Forces: M~g (blue), wall reaction ~F (red), floor reaction ~N (vertical),

friction ~f (horizontal).

Torques about the upper point:

NL sin
(π

2
− θ
)

− fL sin θ − Mg
L

2
sin
(π

2
− θ
)

= 0

But from force equilibrium (vertical) N = Mg and (on the verge) f = µN .
Thus,

1

2
cos θ − µ sin θ = 0



Chapter 10

Gravitation

Dr. Vitaly A. Shneidman, Lectures on Mechanics, NJIT.

10.1 Solar system

1 AU ' 150 · 106 km, about the average distance between Earth and Sun.
Mer - about 1/3 AU (0.39)
V - about 3/4 AU (0.73)
Mars - about 1.5 AU (1.53)
J - about 5 AU (5.2)
. . . Solar radius - about 0.5% AU

10.2 The Law

F = G
Mm

r2
(10.1)

or in vector form

~F = −G
Mm~r

r3
(10.2)

with G ≈ 6.7 · 10−11 N · m2/kg2 .
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10.2.1 Gravitational acceleration

g = F/m = G
M

r2
= gs

(

R

r

)2

(10.3)

with gs acceleration on the surface and R - radius of the planet. In vector
form

~g = −G
M~r

r3
= −r̂gs

(

R

r

)2

, r̂ =
~r

r
(10.4)

10.2.2 Satellite

v2

r
= g(r) = gs

(

R

r

)2

for r ' R

v '
√

gsR (10.5)

10.3 Energy

U = −G
Mm

r
(10.6)

10.4 Kepler’s Laws

in class

10.4.1 Deviations from Kepler’s and Newton’s laws

in class



Chapter 11

Oscillations

Dr. Vitaly A. Shneidman, Lectures on Mechanics, NJIT.

11.1 Introduction: Math

11.1.1 sin(x) , cos(x) for small x

sin x ' x (11.1)

error is about −x3/6 and can be neglected for x � 1 [we will need this for a
pendulum]

cos x ' 1 − x2

2
(11.2)

error is tiny for small x, about x4/24 .

11.1.2 Differential equation ẍ + x = 0

The equation

ẍ(t) + x(t) = 0 (11.3)

has a general solution
x(t) = B cos t + C sin t

45
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with arbitrary constants B,C. Can be checked by direct verification (note
that ẍ = −x). The values of B,C are determined by initial conditions x(0)
and ẋ(0). Alternatively, one can combine sin and cos:

x(t) = A cos (t + φ)

with two constants A =
√

B2 + C2, and φ.
The equation

ẍ(t) + ω2x(t) = 0 (11.4)

is reduced to the above by replacing t with ωt. Thus,

x(t) = B cos(ωt) + C sin(ωt) (11.5)

with

B = x(0) , C = ẋ(0)/ω (11.6)

Or,

x(t) = A cos (ωt + φ) , A =
√

B2 + C2 (11.7)

with A known as the amplitude and φ the initial phase.

11.2 Spring pendulum

Hook’s law:

F = −kx (11.8)

and 2nd Newton’s law

F = mẍ (11.9)

give eq. (11.4) with

ω =

√

k

m
(11.10)

(in radians per second). The oscillation frequency

f = ω/2π (11.11)

with units 1/s, or Hz. Period of oscillations

T =
1

f
=

2π

ω
= 2π

√

m

k
(11.12)
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11.2.1 Energy

Kinetic:

K(t) =
1

2
m [ẋ(t)]2

Potential:

U(t) =
1

2
kx(t)2

Total:
E = K + U = const

11.3 Simple pendulum

Restoring force:
F = −mg sin θ ' −mgθ

Tangential acceleration:
a = Lθ̈

Thus

θ̈ +
g

L
θ = 0 (11.13)

exactly like eq. (11.4). Thus, the same solution with x → θ and

ω2 =
g

L
(11.14)

or

T =
2π

ω
= 2π

√

L

g
(11.15)
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11.4 Physical pendulum

Rotational 2d law:
Iα ≡ Iθ̈ = τ

If l - distance from CM:

τ = −mgl sin θ ≈ −mglθ

for small amplitudes.
Thus,

θ̈ + θ
mgl

I
= 0 (11.16)

which is the same differential equation as before with x(t) → θ(t). Thus,
the same trigonometric solution with

ω2 =
mgl

I
, T = 2π

√

I

mgl
(11.17)

Example: uniform rod of length L, pivoted at a distance l from the center.

Solution: from the rotational inertia of a rod about the CM, I0 = 1

12
ML2

and the parallel axis theorem

I = I0 + Ml2 = M
(

L2/12 + l2
)

Thus,

T = 2π

√

I

Mgl
= 2π

√

L2/12 + l2

gl
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0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
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Figure 11.1: Physical pendulum of mass M and length L making angle θ
with vertical. Forces: M~g (red), with torque τ = −Mgl sin θ. Right: period
of small oscillations T for L = 1 m as a function of the off-center distance l,
with a minimum at l ≈ 29 cm; dashed line corresponds to the pivot outside
of the rod (on a massless extension).

11.5 Torsional pendulum

Consider
τ = −κθ

which is a torsional ”Hook’s law”. Then, from rotational 2d law:

Iα ≡ Iθ̈ = τ

and

θ̈ + θ
κ

I
= 0 (11.18)

Thus,

ω2 =
κ

I
, T = 2π

√

I

κ
(11.19)

11.6 Why are small oscillations so universal?

in class
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11.7 Resonance

Add external driving to a spring pendulum:

F = −kx + F0 cos (ωdt)

Then

mẍ + kx = F0 cos (ωdt) (11.20)

Look for a solution
x(t) = A cos (ωdt)

where the amplitude A has to be found. Using

ẍ(t) = −ω2

dx(t)

one obtains
A
(

−mω2

d + k
)

= F0

or, with ω0 =
√

k/m, the natural frequency

|A| =
F0/m

|ω2

0
− ω2

d|
(11.21)

Note INFINITY when ωd = ω0 . This is the resonance!

0.5 1 1.5 2 2.5 3
reduced frequency

10

20

30

40

scaled amplitude

Figure 11.2: Resonance. When the driving frequency ωd is close to the
natural frequency ω =

√

k/m there is an enormous increase in the amplitude.


