Coulombs law

1.	A charge of	$+10\mu C$	and a	charge c	of $-10\mu C$	are located	at a	distance	20	${\rm m}$	from
	each other.	The force	e betw	veen the	m is						

- 2. A particle whose mass is 30.0 grams and whose charge is 5 nC is released from rest when it is 20 cm from a second particle of charge 10 C. Find the magnitude of the first particles initial acceleration
- 3. Imagine two students 10m away from each other, each losing 0.01% of his electrons.
 - (a) estimate the charge on each student
 - (b) find the repulsion force
 - (c) compare it with the weight of Mt. Everest
- 4. A positive charge q=2 nC is placed at the origin. A positive charge of the same magnitude is placed a = 1 cm from the origin on the x-axis, and a third identical but negative charge is placed a = 1 cm below the origin on the negative y-axis. Draw a clear diagram. The magnitude and direction of the net force on the charge at the origin is: