Fields And Gauss

I. Dipole. Generic:

\[E = \frac{k q d}{L^3} \]

If charge \(Q \) at the observation point (black dot)

\[\vec{F} = Q \vec{E} \]

In all problems below \(q = \pm 1 \mu C \) (small red/blue circles) or \(q = \pm 2 \mu C \) (large red/blue), and \(Q = 0.5 \mu C \) (black dot). Distances are in mm.

For all configurations:

a) find the direction of the field at the black dot; show your work to instructor
b) clearly identify \(L \) and \(d \) in each picture and calculate the magnitude of the field
c) calculate the magnitude of the force on \(Q \)
II. Zero points of field.

1. Charges $q = 1 \text{nC}$ and $Q = -2 \text{nC}$ are placed at $x = 0$ and $x = 3 \text{cm}$. Identify the point with $E = 0$.

2. The same for $Q = +2 \text{nC}$
III. Gauss.

\[\Phi = \frac{q_{enc}}{\epsilon_0} \]

1. A square has a side of 1 cm. The field \(E = 10^5 \, N/C \) makes an angle 30° with the normal. Find \(\Delta \Phi \).

2. Find \(\Phi \) through an elliptically shaped surface

3. A metal sphere with \(R = 2 \, m \) has \(Q = 1 \, nC \).
 a) find \(E \) for \(r = 0.25 \, m \)
 b) same for \(r = 3 \, m \).
IV. Extra credit

1. For $\lambda = 1 \, \mu C/m$ find E at the red dot, at a distance $D = 1 \, m$ away from an infinite line. (see lecture notes.)

2. The same, $D = 1 \, m$ away from the end of a semi-infinite line:

$$dE = \frac{k \lambda \, dx}{(D + x)^2}$$