

1

Introduction to MATLAB: Part I

MATLAB is a software package that lets you do mathematics and computation, analyze data, develop algorithms,
do simulation and modeling, and produce graphical displays and graphical user interfaces. This section will
introduce you to how to use the MATLAB within the scope of physics laboratory experiments.

The convention in this instruction is that a command in MATLAB is written in bold gray in the text.

Installation of MATLAB on your own computer

If you wish to have MATLAB software installed on your own computer, you can download it from NJIT
Information Services & Technology Department (visit URL of https://ist.njit.edu/matlab/). You can follow the
installation instruction provided by the website.

Getting Started

To run MATLAB on a PC, double-click on the MATLAB icon. To run MATLAB on a unix system, type matlab at
the prompt. Once you open MATLAB, you will see MATLAB window consisting of subwindows as shown in
Figure 1. In these windows, you can define variables, manage files, execute programs, and view command history.

Workspace window displays the defined variables. You may also list all defined variables by typing who in
Command Window. The Command Window is where the user defines variables and enters MATLAB pre-defined
functions.

In the Command Window, you will see a prompt with two greater-than signs (>>) where you can type a command to
run MATLAB. When starting MATLAB you will see a message “New to MATLAB? Watch this Video, see Demos,
or read Getting Started.” on the top of command window where you see the prompt: To learn more about MATLAB,
click on one of these underlined commands or type helpwin, helpdesk, or demos in the prompt,

You can also learn how to use any MATLAB command by typing help followed by the name of the command, for
example, help sin. You can also use the lookfor command, which searches the help entries for all MATLAB
commands for a particular word. For example, if you want to know which MATLAB functions to use for spectral
analysis, you could type lookfor spectrum. MATLAB responds with the names of the commands that have the
searched word in the first line of the help entry. If you want to know more about lookfor command, try to type help
lookfor.

Ending MATLAB Session

To end a MATLAB session type quit or exit at the MATLAB prompt. You can also click on the button that
generally closes your windows (usually an X in the upper right-hand corner). Before you exit MATLAB, you may
need to save your work, print any graphics or other files you need. How to do so will be discussed later.
If you want to abort running MATLAB, you can hold down the key labeled Ctrl and press C in the keyboard (in
short, Ctrl +C).

Change Working Directories

Before you start typing commands in the command window, change the current directory (you can see the top menu)
to your own “My Documents” folder. To do this, click on the little button with three dots near the “Current
Directory” (arrow in Figure 1). Once clicking on it, “Browse for Folder” window will be popped up. Scroll to the
top and select My Documents and then create or select your own MATLAB folder.

2

Figure 1. MATLAB Window

Inputting Commands

To input a command and execute it, just type it at the prompt (>>) in the Command Window and press “Enter” key
in the keyboard. For example, to run simple calculation of 1 + 1, type 1 + 1 at the prompt and press enter key:

>> 1 + 1
ans =
 2

The “ans” in the above is now a variable that you can use again. If you want to multiply the answer by 4, type ans*4
at the prompt and press enter key.

>> ans*4
ans =
 8

In some cases, it is worthwhile to include comments at the end of a command and/or in the command line in the
Command Window or especially in M-file. These comments might explain what is being done in the calculation, or
might interpret the results of the calculation. In MATLAB, the percent sign (%) begins a comment; the rest of the
line is not executed by MATLAB. See the following:

>> 1+1 % this is demonstration for inputting a command
ans =
 2

Assigning Variables

Variables in matlab are named objects that are assigned using the equals sign = . They are limited to 31 characters
and can contain upper and lowercase letters, any number of ‘_’ characters, and numerals. They may not start with a
numeral. matlab is case sensitive: A and a are different variables. The following are valid matlab variable
assignments:

a = 1
Speed = 1500

Command
Window

Work
Space

Command
History

3

kineticEnergy_inital = ½*m*v^2
name = ’John Smith’

The followings are invalid assignments. If you type invalid assignments, you get error message in MATLAB (see
below):

>> 2for1 =3
 2for1 =3
 ↑
Invalid expression. Check for missing multiplication operator, missing or
unbalanced delimiters, or other syntax error. To construct matrices, use
brackets instead of parentheses.

To assign a variable without getting an echo from MATLAB end the assignment with a semi-colon (;). See the
difference in the followings:

>> speed = 10

MATLAB will display or echo your input of >>speed = 10 as below:

speed =
 10

To suppress the echo, add a “;” at the end of the input:

>> speed = 10;

The echo is not seen. In fact the variable of “speed” is stored in MATLAB. If you type speed, MATLAB will show
the data assigned to the variable of speed:

>> speed
speed =
 10

Inputting Vectors and Matrices

A vector is an ordered list of numbers. There are two types of vectors, row vector and column vector. For example,
Row vector, A = (1 3 5 -1 0), which is 15 (number of rows  number of columns) matrix and

which is 51 matrix. Column vector,

You can enter a vector of any length in MATLAB by typing a list of numbers, separated by commas (,) and/or
spaces, inside square brackets. For example:

>> x= [-1,1,2,4,6]
x =
 -1 1 2 4 6
>> y = [-2 0 -1 4 8]
y =
 -2 0 -1 4 8

B

1

3

5

1

0



















4

Suppose that you want to create a vector of values ranging from 1 to 10. Here’s how to do it without typing each
number:

>> X = 1:10
X =
 1 2 3 4 5 6 7 8 9 10

The notation 1:10 is used to represent a vector of numbers arranging from 1 to 10 in increments of 1 (default
increment in MATLAB is 1). The increment can be specified as the middle of three arguments;

>> Y = 1:2:9
Y =
 1 3 5 7 9

Increments can be fractional or negative, for example, 0:0.1:1 or 100:-1:0. The elements of the vector X can be
extracted as X(1), X(2), etc. For example:

>> X = [3 2 4 6 20]
X =
 3 2 4 6 20

>> X(1)
ans =
 3

>> X(3)
ans =
 4

To change the vector X from a row vector to a column vector, put a prime (’) after X or the corresponding command,
transpose (X):

>> X'
ans =
 3
 2
 4
 6
 20

>> Y = transpose(X)
ans =
 3
 2
 4
 6
 20

A matrix is a rectangular array of numbers. Row and column vectors, which were aforementioned, are examples of
matrices. Consider the 3 × 4 matrix

5

You can enter the above matrix A in the Command Window (each row is separated by typing semicolon “;”)

>> A = [1, 2, 3, 4 ; 5, 6, 7, 8; 9, 10, 11, 12]

A =
 1 2 3 4
 5 6 7 8
 9 10 11 12

Arithmetic Calculation

You can add with +, subtract with -, multiply with *, divide with /, and exponentiate with ˆ. For example:

>> 3ˆ2 - (5 + 4)/2 + 6*3
ans =
22.5000

MATLAB prints the answer and assigns the value to a variable called ans. If you want to perform further
calculations with the answer, you can use the variable ans rather than retype the answer. For example, you can
compute the sum of the square and the square root of the previous answer as follows:

>> ansˆ2 + sqrt (ans)
ans =
510.9934

The math operation (+, -, *, /) also can work on matrices. Some examples:

>> A = [2, 3, 5, 10, 3]
A =
 2 3 5 10 3

>> A + 3
ans =
 5 6 8 13 6

>> A*3
ans =
 6 9 15 30 9

>> B = [1, 3, 4, 5, 4]*2
B =
 2 6 8 10 8

>> A + B
ans =
 4 9 13 20 11

Some points should be made here. In computing a power of a number, you need to use the ^ operator (3^2 = 9) in
MATLAB. In matrix the operation of A^2, however, means A*A which is matrix multiplication. If you want to
calculate a power of each element in a matrix, you have to use a . before the operator. See the example:

>> X = [1, 2, 3, 4]
X =

6

 1 2 3 4

>> X.^2
ans =
 1 4 9 16

>> Y = [2, 3, 4, 5]
Y =
 2 3 4 5

To multiply or divide each element in matrix X by each element in matrix Y, example is (the size of matrix X and Y
should be same)

>> X.*Y
ans =
 2 6 12 20

>> X./Y
ans =
 0.5000 0.6667 0.7500 0.8000

Algebraic or Symbolic Computation

For conducting symbolic computations, you need to use syms to declare the variables that you plan to use in the
calculation. For example, if you want to calculate (x-y)  (x-y)2 in MATLAB, see the below:

>> syms x y
>> (x - y)*(x - y)ˆ2
ans =
(x-y)ˆ3

To differentiate function of x3 in MATLAB (diff is the command for differentiation),

>> syms x, diff(x^3)
 ans =
 3*x^2

The command sym converts the string to a symbolic expression. The commands sym and syms are closely related.
In fact, syms x is equivalent to x = sym(’x’). The command syms has a lasting effect on its argument. In fact,
even if x was previously defined, syms x clears that definition and renders x a symbolic variable – which it
remains until (if ever) it is redefined. On the other hand, sym has only a temporary effect unless you assign the
output to a variable, as in x = sym(’x’). Here is how to add 1/2 and 1/3 symbolically:

>> sym(’1/2’) + sym(’1/3’)
ans =
5/6

Inputting Mathematical Functions

In MATLAB you will use both built-in functions and functions that you create yourself.

Built-in Functions

7

MATLAB has many built-in functions. These include sqrt (for square root), cos (for cosine), sin (for sine), tan
(for tangent), log (for natural logarithm, ln), exp (for exponential function, ex), and atan (for arctangent) as well
as more specialized mathematical functions. MATLAB also has several built-in constants, including pi (the number
π), i (the complex number i = √−1), and Inf ().

>> log(exp(2))
ans =
2

>> log10(100)
ans =
 2

>> sin(pi)
ans =
1.2246e-016

>> sinpi(1)
ans =
0

In mathematics, sine of  (pi) should be exactly 0, but in MATLAB, the answer is written in floating-point format
and means 1.2246 × 10-16. The inaccuracy is due to the fact that typing pi in MATLAB gives an approximation to π
accurate to about 15 digits, not its exact value. For an exact answer; sinpi(x) computes sin(x*pi) without explicitly
computing x*pi. This calculation is more accurate than sin(x*pi) because the floating-point value of pi is an
approximation of π.

User-Defined Functions
You will learn two methods to define your own functions in MATLAB. The first uses the command inline, and
the second uses the operator @. See the below examples:

>> f = @(x) x^2+x
f =
 @(x) x^2+x

>> f(2)
ans =
 6

>> g = inline ('x^2 + x', 'x')
g =
 Inline function:
 g(x) = x^2 + x

>> g(2)
ans =
 6

MATLAB functions can also operate on vectors as well as scalars. For user-defined function to work on vectors,
insert dot before the mathematical operators *, /, and ˆ. Thus to obtain a vectorized version of f(x) = x2, type either

>> f = @(x) x.ˆ2 + x

or, using inline command,

8

>> g = inline (’x.ˆ2 +x’, ’x’)

Now we can evaluate either function on a vector, for example

>> f (1:4)
ans =
 2 6 12 20

>> g([1 3 5])

ans =
 2 12 30

For the function with multi-variables,

>> f = @(x,y) x^2 +y^2; f(1,2)
ans =
 5

>> g = @(x,y) x.^2 + y.^2; g([1 2],[3 4])
ans =
 10 20

In the above, [1 2], [3 4] means [x1 x2], [y1 y2] and thus the answer, 10 20 gives the values of the function at the (x1,
y1), (x2, y2) points of (1, 3) and (2, 4).

Command Line Editing

Key Control Key for MATLAB Standard Operation

 Ctrl P Recall previous line. Works only at command line.
 Ctrl N Recall next line
 Ctrl B Move back one character
 Ctrl F Move forward one character

Ctrl  Ctrl R Move right one word
Ctrl  Ctrl L Move left one word
home Ctrl A Move to beginning of line
end Ctrl E Move to end of line
Esc Ctrl U Clear line

Repeated use of the ↑ key recalls earlier commands. If you type the first few characters of a previous command and
then press the ↑ key, MATLAB will recall the last command that began with those characters. Subsequent use of ↑
will recall earlier commands that began with those characters.

If you want to learn more about the command line editing (short key), you can go to help menu in the MALAB
Window and click on product help. When you seen a help window, you can type “command line editing” in the
“search for”.

Long Lines

If you want to type a MATLAB command that is too long to fit on one line, you can continue on to the next by
ending with a space followed by three period marks (…). For example,

9

>> A = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16; ...
 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16; ...
 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]

Solving Equations

You can solve equations using a command solve. For example, to find the solutions of the quadratic equation x2 −
3x + 1= 0,

>> syms x
>> solve (x^2 - 3*x + 1 == 0)
ans =

3/2 - 5^(1/2)/2
5^(1/2)/2 + 3/2

The answer shows the exact (symbolic) solutions (3 ± √5)/2. To get numerical solutions, you need to use a command
double, or vpa to display more digits.

>> [x] = solve (x^2 - 3*x+1)
 x =
 3/2+1/2*5^(1/2)
 3/2-1/2*5^(1/2)

 In the above MATLAB commands, [x] means you assign the answer to variable x.

>> double (x)
ans =
 2.6180
 0.3820

>> vpa(x, 7)
ans =
 2.618034
 .381966

The command solve can solve higher-degree polynomial equations, as well as many other types of equations. It can
also solve equations involving more than one variable. If there are fewer equations than variables, you should
specify (as strings) which variable(s) to solve for. For example, try to type solve(2*x - log(y) = 1, y) to
solve 2x − log y = 1 for y in terms of x.

>> syms x y
>> solve ('2*x - log(y) ==1', 'y')
ans =

exp(2*x - 1)

You can specify more than one equation as well. For example:

>> syms x y
>> [x, y] = solve(x^2 - y ==2, y - 2*x ==5, x, y)

x =
1 - 2*2^(1/2)
2*2^(1/2) + 1

10

 y =
7 - 4*2^(1/2)
4*2^(1/2) + 7

This system of equations has two solutions. MATLAB reports the solution by giving the two x-values and the two y-
values for those solutions. Thus the first solution consists of the first value of x together with the first value of y.
You can extract these values by typing x(1) and y(1):

>> x(1)
 ans =
 1 - 2*2^(1/2)

>> y(1)
 ans =
 7 - 4*2^(1/2)

The second solution can be extracted with x(2) and y(2). Note that in the preceding solve command we assigned
the output to the vector [x, y].

Performing Calculus

Differentiation
The command to differentiate symbolic expressions is diff. The syntax for second derivatives is diff(f(x),
2), and for nth derivatives, diff(f(x), n).

>> syms x, diff(xˆ3)
ans =
3*xˆ2

Alternative way is:

>> syms x;
>> f = @(x) x^3; diff(f(x))
 ans =
 3*x^2

For the second derivative of x3,

>> syms x;
>> f = @(x) x^3; diff(f(x),2)
 ans =
 6*x

The command diff can also compute partial derivatives of a functions with several variables, as in diff(x*y,
y), and to do multiple partials with respect to mixed variables you must use diff repeatedly, as in
diff(diff(x*y/z, x), y). (Remember to declare y and z to be symbolic.)

>> syms x y z
>> diff(diff(x*y/z, x),y)
 ans =
 1/z

There is one instance where differentiation must be represented by the letter D, namely when you need to specify a
differential equation as input to a command. For example, to use the symbolic ODE (ordinary differential equation)
solver on the differential equation x2y’ = y, (here, y’ means dy/dx), you can type:

11

>> syms y(x)
>> ode = diff(y, x) == y/x^2

ode(x) =

diff(y(x), x) == y(x)/x^2

>> ySol(x) = dsolve(ode)

ySol(x) =

C1*exp(-1/x)

Integration
MATLAB can compute definite and indefinite integrals. Here is an indefinite integral: 2x dx

>> syms x
>> int(x^2,x)
 ans =
 1/3*x^3

Note that MATLAB does not include a constant of integration; the output is a single antiderivative of the integrand.

Now here is a definite integral:
1

2

0

x dx

>> int(x^2,x, 0,1)
 ans =
 1/3

MATLAB can also do multiple integrals. The following command computes the double integral:

1 1

2 2

0 0

()x y dxdy 

>> syms x y;
>> int(int(x^2+y^2, y,0,1),x, 0,1)
 ans =
 2/3

A MATLAB surface is defined by the z coordinates associated with a set of (x, y) coordinates. For example, suppose
we have the set of (x, y) coordinates:

x y()

1 1()

1 2()

1 3()

1 4()

2 1()

2 2()

2 3()

2 4()

3 1()

3 2()

3 3()

3 4()

4 1()

4 2()

4 3()

4 4()











x y()

1 1()

1 2()

1 3()

1 4()

2 1()

2 2()

2 3()

2 4()

3 1()

3 2()

3 3()

3 4()

4 1()

4 2()

4 3()

4 4()













The (x, y) pairs can be split into two matrices:

12

x

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4













y

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4













In MATLAB, you can do such (x,y) pairs using a command, meshgrid. For example:

>> [x, y] = meshgrid (1:4, 1:4)
x =
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4

y =
1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4

The matrix x varies along its columns and y varies down its rows. We define the surface z: z x
2

y
2

 x , which is

the distance of each (x, y) point from the origin (0, 0). To calculate z in MATLAB for the x and y matrices given
above, we begin by using the meshgrid command to generates the required x and y matrices as shown above.

Now we simply convert our distance equation to MATLAB notation; z x
2

y
2

 x becomes:

>> z = sqrt (x.^2 + y.^2)
z =
1.4142 2.2361 3.1623 4.1231
2.2361 2.8284 3.6056 4.4721
3.1623 3.6056 4.2426 5.0000
4.1231 4.4721 5.0000 5.6569

Data Analysis

The following commands can be used for data analysis

Command Function
max (x) Find maximum value in data of x
min (x) Find minimum value in data of x
mean (x) Compute average or mean of data of x
median (x) Find median value in data of x
std (x) Compute standard deviation of data of x
sort (x) Sort data of x in ascending order

We have a data of (1, 3, 5, 7, 1, 6, 4, 12). Let ‘s try to sort the data and then find maximum, minimum, and median
value among the data in MATLAB, followed by mean value and standard deviation. First, you have to assign
variable to the data.

>> x = [1, 3, 5, 7, 1, 6, 4, 12];

13

>> sort (x)
ans =
 1 1 3 4 5 6 7 12

>> max (x)
ans =
 12
>> min (x)
ans =
 1
>> median (x)
ans =
 4.5000
>> mean(x)
ans =
 4.8750
>> std(x)
ans =
 3.6031

Graphics

In this section, we introduce MATLAB’s two basic plotting commands and show how to use them.

The simplest way to graph a function of one variable is by using a command, ezplot. which expects a symbolic
expression, a string or an anonymous function, representing the function to be plotted.

For example, to graph x2 + 2 on the interval −2 to 2 for x, see the following example using a symbolic expression:

>> syms x;
>> y = x^2+1;
>> ezplot (y, [-2 2])
>> xlabel 'x', ylabel 'y', title 'ezplot for x^2+2'

Using a string expression
>> ezplot ('x^2 + 2', [-2 2])

Using an anonymous function,
>> ezplot (@(x) x.^2+ 2, [-2 2])

Modifying Graphs

14

You can modify a graph in the Command Window by using a command as below or in a Figure Window (this will
be discussed later) .

Labels
You can put labels, titles, and text on a plot by using the commands (some examples are shown in the above):
xlabel ’text’
ylabel ’text’
zlabel ’text’
title ’text’
text(x,y,’text’) places text at position (x, y)
gtext(text’) use mouse to place text

Axes
So far we have allowed matlab to choose the axes for our plots. You can change the axes in many ways:

axis([xmin xmax ymin ymax]) sets the axes’ minimum and maximum values
axis square makes the axes the same length
axis equal makes the axes the same scale
axis tight sets the axes limits to the range of the data
axis auto allows MATLAB to choose axes limits
axis off removes the axes leaving only the plotted data
axis on puts the axes back again
grid on draws dotted grid lines
grid off removes grid lines

Editing Axes and Title in the Figure Window
The same change can be made directly in the figure window by selecting Axes Properties... from the Edit menu at
the top of the Figure Window and you will see the widow as shown in Figure 2). You can type the new title in the
box of Title. You can add a label on the vertical axis with ylabel or change the label on the horizontal axis with
xlabel.

Figure 2. Window of Property Editor-Axes

Plotting a graph using plot command
The plot command works on vectors of numerical data. The syntax is plot (x, y), where x and y are vectors of the
same length. For example, supposed that you have experimental data set such as Xexp = [1, 2, 3, 4, 5] and the
corresponding response, Yexp = [12, 21, 34, 46, 55], you can type:

15

>> Xexp = [1, 2, 3, 4, 5];
>> Yexp = [12, 21, 34, 46, 55];
>> plot (Xexp, Yexp, '*')
>> axis ([0 6 0 60])

Then, you will see the plot as shown in Figure 3.

Figure 3. Plot of Xexp = [1, 2, 3, 4, 5] and the corresponding response, Yexp = [12, 21, 34, 46, 55]

To plot x2 + 2 on the interval from −2 to 2 with increment of 0.1 for x you need to first make a list x values (x
vector), and then type plot(X, X.ˆ2). (The . here is essential since X.ˆ2 represents the element-by-element
square of the vector X, not the matrix square.)

>> x = -2.0: 0.1: 2.0;
>> plot (x, x.^2, ':')
>> xlabel 'x', ylabel 'y', title 'x^2'

Then you will see the plot as shown in Figure 4.

Figure 4. Plot of x2 +2 with x range from -2 to 2

Plotting Multiple Curves in a plot
Each time you execute a plotting command such as ezplot, plot, etc, MATLAB erases the previous plot and
draws a new one. If you want to plot two or more graphs in a single plot, you need to use a command hold on and

16

hold off. The hold on command tells MATLAB to retain the previous graphics and add any new graphics on
the plot of the previous. It remains in effect until you type hold off command. For example, if you want to plot
sin(x) and cos(x) curves in a single plot:

>> ezplot ('sin(x)', [0 5*pi])
>> hold on
>> ezplot ('cos(x)', [0 5*pi])
>> grid on
>> hold off
>> title 'sin (x) and cos (x)'

Figure 5. Plotting sin(x) and cos(x) curves in a plot using hold on command

The result is shown in Figure 5. The commands hold on and hold off work with all graphics commands.

The following example shows you how to add more plot to the previous plot. In this example, supposed that you
conducted a simple harmonic motion experiment for spring system, we have experimental data set of mass (m_exp)
vs. period (T_exp) as shown below.

>> m_exp = [0.06, 0.08, 0.1, 0.12, 0.16];
>> T_exp = [4.5, 5.2, 5.8, 6.3, 7.2];

The spring constant (k) is 0.11. The equation of simple harmonic motion is given by

. The MATLAB

code will be as following:

>> syms m
>> m = 0:0.001:0.2;
>> k = 0.11;
>> T = 2*pi*sqrt(m./k);

Then, let’s plot the experimental data and the function of period (theoretical value)

>> plot (m_exp, T_exp, 'o')
>> hold on
>> plot (m, T)
>> hold off
>> xlabel 'm (kg)', ylabel 'T (s)', title 'Period (T) vs. Mass (m)'

17

The result is shown in Figure 6 where the experimental data and theoretical values are plotted.

Figure 6. Plot of period versus mass : experimental data and theoretical values

Changing Appearance of a Plot

There are many options for changing the appearance of a plot. For example: plot(x,y,’r-.’) will join the
points using a red dash-dotted line. Other colors you can use are: ’c’, ’m’, ’y’, ’r’, ’g’, ’b’, ’w’, ’k’, which
correspond to cyan, magenta, yellow, red, green, blue, white, and black. Possible line styles are: solid ’-’, dashed ’--’,
dotted ’:’, and dash-dotted ’-.’. To plot the points themselves with symbols you can use: dots ’.’, circles ’o’, plus
signs ’+’, crosses ’x’, or stars ’*’, and many others (type help plot for a list). For example: plot(x,y,’bx’)
plots the points using blue crosses without joining them with lines, and plot(x,y,’b:x’) plots the points using
blue crosses and joins them with a blue dotted line. Colors, symbols and lines can be combined, for example, ’r.-
’, ’rx-’ or ’rx:’.

If you feel it difficult to use these commands in changing appearance of curve, you can also do it in Figure Window.
Once you execute a plotting command and you will see a figure window pop up, you can go to “View” menu and
select “Figure Palette’ by clicking on it. You will see the Figure Palette window as shown in Figure 7, where you
can change the appearance of curves.

Figure 7. Figure Palette window

18

Saving Plot Figure
If you need to save the plot, you can go to “File” menu in the Figure Window and click on “Save”. You can type a
file name and select save as type such as MATLAB figure, JPG Image, TIFF Image, etc.

Use of MATLAB for Linear Fitting of Data (The 1st degree polynomial fitting)

This section will show you how to perform a curve fitting for experimental data. As mentioned earlier in this
instruction, this guide is limited within the scope of physics laboratory experiments. Therefore, the curve fitting here
include only linear fitting (least-square fit). You can learn more about curve fitting including polynomial fits, line
interpolation, spline interpolation, and a non-polynomial least-square fit in the MATLAB Help window.

To begin the data fit process, we first generate a relevant data set in the Command Window. We have a data set
obtained from Hooke’s law experiment. In the below data set, Fexp indicates force applied to a spring and Dexp
indicates the stretch (displacement from resting point) of the spring.

Fexp (N) 1.9 3.9 5.9 6.9 7.8
Dexp (m) 0.03 0.10 0.16 0.20 0.23

As you know, the relationship between applied force and displacement in spring system is linear based on Hook’s
law (F = kx, where k is called spring constant, a linear coefficient). Let’s try to find the linear coefficient by doing
linear fitting of the data in MATLAB. The polyfit and polyval commands are used for the least-squares fitting.

Example I

>> Fexp = [1.9, 3.9, 5.9, 6.9, 7.8];
>> Dexp = [0.03, 0.1, 0.16, 0.20, 0.23];
>> coefficients = polyfit(Dexp, Fexp, 1) % linear fitting
coefficients =
 29.6812 1.0059

>> m = coefficients(1); % slope of linear fitting line
>> b = coefficients(2); % intercept of linear fitting line
>> m
m =
 29.6812

Here, the slope m obtained from linear fitting represents the spring constant, k.

>> b
b =
 1.0059

Based on the slope (m) and the intercept (b), you can make a fitting line (y = mx + b) such as the following:

>> Ybestfit = m*Dexp + b;

Then let’s do plotting experimental data and linear fitting line. The result is shown in Figure 8.

>> Ybestfit = m*Dexp + b;
>> plot (Dexp, Fexp, 'o')
>> hold on
>> plot (Dexp, Ybestfit,':')
>> hold off

19

>> xlabel 'Dexp (m)', ylabel 'Force (N)',
>> title ' Force vs. Displacement in spring'

Figure 8. Plot of experimental data and linear fitting line for force versus displacement in spring-mass system

Example II
You can generate a new value (estimated) for Y from linear fit by using a polval function such as below. The
resultant plot should be the same as shown in Figure 8.

>> clear all % clear all previous variables
>> Fexp = [1.9, 3.9, 5.9, 6.9, 7.8];
>> Dexp = [0.03, 0.1, 0.16, 0.20, 0.23];
>> coefficients = polyfit(Dexp, Fexp, 1)
coefficients =
 29.6812 1.0059

>> Ybestfit = polyval (coefficients, Dexp); % generate estimated Y values

>> plot (Dexp, Fexp, 'o', Dexp, Ybestfit, ':')
>> xlabel 'Dexp (m)', ylabel 'Force (N)'

Regression Analysis

After getting the linear fitting line, the next step is to evaluate how good the fitting is. In this session, you will learn
how to perform “residuals for linear fit” and “norm of residuals” and “R2” (Goodness of fit), called regression
analysis through MATLAB.

You can perform the linear fitting and norm of residual either in command window or plot window.

 I. Working in the command window,

>> Fexp = [1.9 3.9 5.9 6.9 7.8];
>> Dexp = [0.03 0.1 0.16 0.20 0.23];

20

>> coefficients = polyfit(Dexp, Fexp, 1)
coefficients =
 29.6812 1.0059

>> Ybestfit = polyval(coefficients, Dexp)
Ybestfit =
 1.8963 3.9740 5.7549 6.9421 7.8326

To understand what MATLAB has done here, let us consider n data points, each consisting of the value xi (as the
independent variable) and the corresponding value yi (as the dependent variable). In the correlating equation (here,
Ybestfit line) we have a predicted value ypi corresponding to value of xi and then we define the residual as di  yi -
ypi. The residual plot is di versus xi. You will now perform the residual analysis through MATLAB.

>> d = Fexp - Ybestfit; % this represents di = yi – ypi
>> plot(Dexp, Fexp, 'o', Dexp, Ybestfit, ':')
>> figure(2), bar (Dexp, d), xlabel 'Dexp', ylabel 'Residual'

The figure(2) command names the next figure “figure 2”, and avoid having it displace the previous “figure 1” in the
Figure Window as shown in Figure 9.

Figure 9. Plot of data and linear fitting line (left window) and bar plot of residual (right window)

Now let’s examine the meaning of “norm of residuals”. The command is:

>>norm(d, 2)

This command means is norm(d , 2) = sum(abs (d).^2)^(1/2) =

1

n

i

d
i 2



. On the other hand,

the square of norm(d,2) is the sum of the squares of the differences between the predicted values and the actual
values (di  yi - ypi).

A more common measure of the “goodness of fit” over the norm is “the square of r”. In mathematical form, the r2 is
expressed as below:

2
2

2

()
1

(())
i ip

i

y y
r

y mean y


 






21

The MATLAB command for the above equation is as below:

>> r2 = 1 – sum(d.^2) / sum((y – mean(y)).^2); % where d = yi - yip, mean(y)
represents mean value of y data

Supposed that r2 value of 0.9 is obtained, it means 90% of the variation in Yex data can be explained by the linear fit.

Let’s examine the goodness of fit for linear fitting that we obtained from the spring experiment. In this case, you can
substitute y with Fexp and we already defined d as d = Fexp – Ybestfit in the previous page. Therefore, we
can type successively in the Command Window:

>> r2 = 1- sum(d.^2)/sum((Fexp - mean(Fexp)).^2)
r2 =
 0.9987

(II) In the plot window

In the Figure window, click on Tools, Basic Fitting to open the Basic Fitting Interface. Click on linear, Show
equations, 4 Significant digits, Plot residuals, Show norm of residuals. MATLAB finds the straight line best fitting
the data using the leas-squares method.

>> clear all
>> Fexp = [1.9 3.9 5.9 6.9 7.8];
>> Dexp = [0.03 0.1 0.16 0.20 0.23];
>> plot (Dexp, Fexp, 'o')

1. Go to the menu in the figure window and click on “Tools”
2. Click on “Basic Fitting”

3. In the Basic Fitting Window you can select “linear”, “Show Equations” and “Plot residuals”. You can
choose the significant digits under “Show equation”.

22

Click on the arrow “” button.

4. Once you followed, you will see the below:

