
In [1] := (*MATHEMATICA companion to Lab 201: Field from point charges*)

In [2] :=

(*0. Commands and graphing objects used:

Table

Graphics

Arrow - to plot vectors

Point

Disk

Line

Show - to combine plots and pictures

Export

Norm - length of a vector

VectorPlot (plots directional field)

StreamPlot - plots field lines

FullSimplify[...,Assumptions

x ∈ Reals] - to simplify ... assuming x is real (not complex)

%/.{a..,b ..}- the replacement command;

mostly used when symbolic parameters a,

b, ... in the previous expression (%) are to be replaced by speciific values

[[1]] - the 1st element of a list

/@ - advanced command,

which indicates that the operation is applied to every element of the list. Useful for

graphing multiple objects. E.g. if 'list' is a long list of {x,y} coordinates,

the command Graphics[Point /@ list] will show an array of

points with indicated coordinates. NOT CRUCIAL at this

stage.(Also, see files IntroToMathematicaI and II on our web page https://

web.njit.edu/~vitaly/121/ *)

In [3] := (*Units: later we will learn to carry out transformations of equations and computations

for variables with units. At the moment, we will use only SI base units*)

In [4] := repSI := {ke  9. × 10^9, nC  10.^-9}

In [5] := (*I. Field from a single charge: E


= keqr

r3*)

In [6] := efield[rvec_, q_] := ke q rvec / Norm[rvec]^3

In [7] := rvec := {x, y}

In [8] := efield[rvec, 1 nC] /. repSI

Out[8]= 
9. x

Abs[x]2 + Abs[y]2
3/2

,
9. y

Abs[x]2 + Abs[y]2
3/2



In [9] := ef = FullSimplify[%, Assumptions  {x ∈ Reals, y ∈ Reals}]

Out[9]= 
9. x

x2 + y2
3/2

,
9. y

x2 + y2
3/2



In [10] := fig1P = VectorPlot[ef, {x, -1, 1}, {y, -1, 1}]

Out[10]=

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

In [11] := (*and for negative charge of -1 nC:*)

In [12] := fig1N = VectorPlot[-ef, {x, -1, 1}, {y, -1, 1}]

Out[12]=

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

2 Lab201.nb

In [13] := (*Note: Mathematica gives all vectors the same length and indicates their magnitude

by color. Why?? It would very hard to assign vectors proportional lenths

due to strong singularity at r0. Let us try by "hand" as described

below (this is an advanced part which can be followed superficially)*)

In [14] := (*first,

I define a list of points from which to start vectors. To comply with symmetry,

I arrange the points in 4 circles (12 points in each)with radii 1,2,3,4). Each

circle is rotated by 1/4 of a notch to minimize overlap of future

vectors. I use the real and imaginary parts

of a complex number to locate a point,

but basically this is the same as cos and sin in polar coordinates *)

In [15] := list1 = Table[{Re[Exp[2 Pi ×

I n / 12]], Im[Exp[2 Pi I n / 12]]}, {n, 0, 11}];

list2 = Table[{2 Re[Exp[2 Pi ×

I n / 12]], 2 Im[Exp[2 Pi I n / 12]]}, {n, -3 / 4, 11}];

list3 = Table[{3 Re[Exp[2 Pi ×

I n / 12]], 3 Im[Exp[2 Pi I n / 12]]}, {n, -1 / 2, 11}];

list4 = Table[{4 Re[Exp[2 Pi ×

I n / 12]], 4 Im[Exp[2 Pi I n / 12]]}, {n, -1 / 4, 11}];

In [16] := (*now let's have a look:*)

In [17] := Graphics[Point /@ {list1, list2, list3, list4}]

Out[17]=

Lab201.nb 3

In [18] := (*now I assign vectors to each point;

scaling of lengths is arbitrary and is given by parameter a. Note that Arrow ("vector")

depends on 2 pairs of coordinates - beginning and end- hense the Transpose command*)

In [19] := a = .5;

arlist1 = Transpose[{list1, (1 + a * 16) list1}];

arlist2 = Transpose[{list2, (1 + a * 1 / 2 * 4) list2}];

arlist3 = Transpose[{list3, (1 + a * 1 / 3 * 16 / 9) list3}];

arlist4 = Transpose[{list4, (1 + 1 / 4 * a) list4}];

In [20] := (*now I add colors to distinguish the origin of vectors:*)

In [21] := Graphics[{Red, Point /@ list1, Arrow /@ arlist1, Orange, Point /@ list2, Arrow /@ arlist2,

Green, Point /@ list3, Arrow /@ arlist3, Blue, Point /@ list4, Arrow /@ arlist4}]

Out[21]=

In[22] := (*Note the difficulty of plotting scaled vectors due to singularity at r=

0. Things get even vorse for a negative charge or for a system of charges.

Thus NEED field lines*)

4 Lab201.nb

In [23] := StreamPlot[ef, {x, -2, 2}, {y, -2, 2}]

Out[23]=

-2 -1 0 1 2

-2

-1

0

1

2

In [24] := fig1Pstream = Show[%, Graphics[{Red, Disk[{0, 0}, .1]}]]

Out[24]=

-2 -1 0 1 2

-2

-1

0

1

2

In [25] := (*much better; now the same for negative charge*)StreamPlot[-ef, {x, -2, 2}, {y, -2, 2}];

Lab201.nb 5

In [26] := fig1Nstream = Show[%, Graphics[{Blue, Disk[{0, 0}, .1]}]]

Out[26]=

-2 -1 0 1 2

-2

-1

0

1

2

In [27] := (*Two charges: field on x-axis, as in Fig.4 of the Manual *)

In [28] := Clear[a, x, y, r1, r2]; a = 1; y = 0; r1 = {-a, 0}; r2 = {a, 0}; q1 = q2 = 1 nC;

In [29] := efield[rvec - r1, q1] + efield[rvec - r2, q2] /. y  0

(* which is keq*
x-1

x-1 3
+

x+1

x+1 3


Out[29]=


ke nC (-1 + x)

Abs[-1 + x]3
+
ke nC (1 + x)

Abs[1 + x]3
, 0

In [30] := ef2P = %〚1〛 /. repSI

Out[30]=

9. (-1 + x)

Abs[-1 + x]3
+

9. (1 + x)

Abs[1 + x]3

6 Lab201.nb

In [31] := Plot[ef2P, {x, -2, 2}, PlotRange  {-1000, 1000}]

Out[31]=

-2 -1 1 2

-1000

-500

500

1000

In [32] := Show[%,

Graphics[{Dashed, Line[{{-1, -1000}, {-1, 1000}}], Line[{{1, -1000}, {1, 1000}}]}],

GridLines  Automatic, PlotLabel  "Total electrric field vs x "]

Out[32]=

-2 -1 1 2

-1000

-500

500

1000
Total electrric field vs x

In [33] := figef2P = %;

In [34] := (*Note enormous increase near charges!!*)

○

In [35] :=

(*answer QUESTIONS 1- 4 on pp.23,24 and replot the graph for a dipole with q2=-1 nC*)

(*Part II. Field in 2D - see fig.5 in the Manual*)

In [36] := Clear[a, x, y, r1, r2]; a = 1; r1 = {0, a}; r2 = {0, -a}; q1 = q2 = 1 nC;

Lab201.nb 7

In [37] := efield[rvec - r1, q1] + efield[rvec - r2, q2]

Out[37]=


ke nC x

Abs[x]2 + Abs[-1 + y]2
3/2

+
ke nC x

Abs[x]2 + Abs[1 + y]2
3/2

,

ke nC (-1 + y)

Abs[x]2 + Abs[-1 + y]2
3/2

+
ke nC (1 + y)

Abs[x]2 + Abs[1 + y]2
3/2



In [38] := ef2D = FullSimplify[%, Assumptions  {x ∈ Reals, y ∈ Reals}] /. repSI

Out[38]=

9. x
1

x2 + (-1 + y)2
3/2

+
1

x2 + (1 + y)2
3/2

, 9.
-1 + y

x2 + (-1 + y)2
3/2

+
1 + y

x2 + (1 + y)2
3/2



In [39] := (*Calculation of field at arb. point*)

ef2D /. {x  1, y  .45}(*as in fig.5*)

Out[39]=

{7.7014, -0.94191}

In [40] := VectorPlot[ef2D, {x, -2, 2}, {y, -2, 2}]

Out[40]=

-2 -1 0 1 2

-2

-1

0

1

2

In [41] := figVecPlot2D  %;

In [42] := Export["figVecPlot2D.jpeg", %, "JPEG"]

Out[42]=

figVecPlot2D.jpeg

In [43] := (*TRY DIFFERENT FORMATS: select the best. Print out separate figure

(or page from notebook). Sketch lines by hand.Compare with below*)

8 Lab201.nb

In [44] := StreamPlot[ef2D, {x, -2, 2}, {y, -2, 2}]

Out[44]=

-2 -1 0 1 2

-2

-1

0

1

2

In [45] := (*COMPLETE THE TASKS 4-6 on p.26 for a dipole. Note that VectorPlot

in Mathematica is the closest (not identical) to quiver in MATLAB*)

Lab201.nb 9

