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Abstract

These lecture notes will contain some additional material related to Arfken & Weber, 6th ed.

(abbreviated Arfken ), which is the main textbook. Notes for all lectures will be kept in a single

file and the table of contents will be automatically updated so that each time you can print out

only the updated part.

Please report any typos to vitaly@oak.njit.edu
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Dr. Vitaly A. Shneidman, Phys 780, Foreword

Foreword

These notes will provide a description of topics which are not covered in Arfken in

order to keep the course self-contained. Topics fully explained in Arfken will be described

more briefly and in such cases sections from Arfken which require an in-depth analysis

will be indicated as work-through: ... . Occasionally you will have reading assignments

- indicated as READING: ... . (Do not expect to understand everything in such cases, but

it is always useful to see a more general picture, even if a bit faint.)

Homeworks are important part of the course; they are indicated as HW: ... and

include both problems from Arfken and unfinished proofs/verifications from notes. The

HW solutions must be clearly written in pen (black or blue).
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Part I

Introduction

I. VECTORS AND VECTOR CALCULUS

A. Vectors

A vector is characterized by the following three properties:

• has a magnitude

• has direction (Equivalently, has several components in a selected system of coordi-

nates).

• obeys certain addition rules (”rule of parallelogram”). (Equivalently, components of

a vector are transformed according to certain rules if the system of coordinates is

rotated).

This is in contrast to a scalar, which has only magnitude and which is not changed when a

system of coordinates is rotated.

How do we know which physical quantity is a vector, which is a scalar and which is

neither? From experiment (of course). More general objects are tensors of higher rank,

which transform in more compicated way. Vector is tensor of a first rank and scalr - tensor

of zero rank. Just as vector is represented by a row (column) of numbers, tensor of 2d rank

is represented by a matrix. (although matrices also appear indifferent contexes, e.g. for

systems of linear equations).

1. Single vector

Consider a vector ~a with components ax and ay (let’s talk 2D for a while). There is an

associated scalar, namely the magnitude (or length) given by the Pythagoras theorem

a ≡ |~a| =
√

a2
x + a2

y (1)
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Note that for a different system of coordinates with axes x′, y′ the components ax′ and ay′

can be very different, but the length in eq. (1) , obviously, will not change, which just means

that it is a scalar.

Another operation allowed on a single vector is multiplication by a scalar. Note that the

physical dimension (”units”) of the resulting vector can be different from the original, as in

~F = m~a.

2. Two vectors: addition

For two vectors, ~a and ~b one can define their sum ~c = ~a+~b with components

cx = ax + bx , cy = ay + by (2)

The magnitude of ~c then follows from eq. (1). Note that physical dimensions of ~a and ~b

must be identical.

3. Two vectors: scalar product

If ~a and ~b make an angle φ with each other, their scalar (dotted) product is defined as

~a ·~b = ab cos (φ), or in components

~a ·~b = axbx + ayby (3)

A different system of coordinates can be used, with different individual components but

with the same result. For two orthogonal vectors ~a · ~b = 0. The main application of the

scalar product is the concept of work ∆W = ~F ·∆~r, with ∆~r being the displacement. Force

which is perpendicular to displacement does not work!

4. Two vectors: vector product

At this point we must proceed to the 3D space. Important here is the correct system of

coordinates, as in Fig. 1. You can rotate the system of coordinates any way you like, but

you cannot reflect it in a mirror (which would switch right and left hands). If ~a and ~b make

an angle φ ≤ 180o with each other, their vector (cross) product ~c = ~a×~b has a magnitude
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FIG. 1: The correct, ”right-hand” systems of coordinates. Checkpoint - curl fingers of the RIGHT

hand from x (red) to y (green), then the thumb should point into the z direction (blue). (Note that

axes labeling of the figures is outside of the boxes, not necessarily near the corresponding axes.

FIG. 2: Example of a cross product ~c (blue) = ~a (red) × ~b (green). (If you have no colors, ~c is

vertical in the example, ~a is along the front edge to lower right, ~b is diagonal).

c = ab sin(φ). The direction is defined as perpendicular to both ~a and ~b using the following

rule: curl the fingers of the right hand from ~a to ~b in the shortest direction (i.e., the angle

must be smaller than 180o). Then the thumb points in the ~c direction. Check with Fig. 2.

Changing the order changes the sign, ~b × ~a = −~a × ~b. In particular, ~a × ~a = ~0. More

generally, the cross product is zero for any two parallel vectors.

Suppose now a system of coordinates is introduced with unit vectors î, ĵ and k̂ pointing

in the x, y and z directions, respectively. First of all, if î, ĵ, k̂ are written ”in a ring”, the

cross product of any two of them equals the third one in clockwise direction, i.e. î× ĵ = k̂,

ĵ × k̂ = î, etc. (check this for Fig. 1 !). More generally, the cross product is now expressed

as a 3-by-3 determinant
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(4)

The two-by-two determinants can be easily expanded. In practice, there will be many zeroes,

so calculations are not too hard.

B. Rotational matrix





x′

y′



 =





cosφ − sinφ

sinφ cosφ



 ·





x

y



 (5)

HW: Show that det [Arot] = 1

HW: Show that rows are orthogonal to each other HW: write a ”reflection matrix” which reflects

with respect to the y-axes.

In 3D rotation about the z-axis










x′

y′

z′











= Âz ·











x

y

z











, Âz (φ) =











cosφ − sinφ 0

sinφ cosφ 0

0 0 1











(6)

and similarly for the two other axes, with

Â = Âx (φ1) · Ây (φ2) · Âz (φ3) (7)

(order matters!)

C. Notations and summation convention

Components of a vector in selected coordinates are indicated by Greek or Roman indexes

and summation of repeated indexes from 1 to 3 is implied, e.g.

a2 = ~a · ~a =
3
∑

α=1

aαaα = aαaα (8)

(summation over other indexes, which are unrelated to components of a vector, will be

indicated explicitly). Lower and upper indexes are equivalent at this stage. The notation
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xα will correspond to x , y , z with α = 12 3, respectively and rα will be used in the same

sense.

Scalar product:

~a ·~b = aαbα

Change of components upon rotation of coordinates

a′α = Aαβaβ (9)

The Kronecker delta symbol δαβ will be used, e.g.

a2 = aαaβδαβ , ~a ·~b = aαbβδαβ (10)

(which is a second-rank tensor, while ~a is tensor of the 1st rank).

For terms involving vector product a full antisymmetric tensor εαβγ (”Levi-Civita sym-

bol”) will be used. It is defined as ε1,2,3 = 1 and so are all components which follow after an

even permutation of indexes. Components which have an odd permutation, e.g. ε2,1,3 are

−1 and all other are 0. Then

(

~a×~b
)

α
= εαβγaβbγ (11)

Useful identities (not in Arfken ):

εiklεmnl = δimδkn − δinδkm (12)

εiklεmkl = 2δim (13)

εiklεikl = 6 (14)

HW: Prove the above. Use
(

~a×~b
)2

= a2b2 −
(

~a ·~b
)2

for the 1st one and

δii = 3

for the other two.

HW: Prove the 1st three identities from the inner cover of Jackson
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D. Derivatives

Operator ∇̂:

∇̂ =~i
∂

∂x
+~j

∂

∂y
+ ~k

∂

∂z
(15)

(Cartesian coordinates only!)

Then

gradΦ ≡ ∇̂Φ ≡ ∂

∂~r
Φ (16)

or in components
(

∇̂Φ
)

α
=

∂

∂xα
Φ

Divergence:

div ~F ≡ ∇̂ · ~F =
∂

∂xα
Fα (17)

Curl:

curl ~F ≡ ∇̂ × ~F (18)

or in components
(

curl~F
)

α
= εαβγ

∂

∂xβ
Fγ

HW: Let ~r = (x, y, z) and r = |~r|. Find ∇̂r , ∇̂ · ~r , ∇̂ × (~ω × ~r) with ~ω = const

Note gradΦ and curl ~F are genuine vectors, while div ~F is a true scalar.

Important relations:

curl (gradΦ) = 0 (19)

div
(

curl ~F
)

= 0 (20)

HW: show the above

HW: (required) 1.3.3, 1.4.1,2,4,5,9,11

1.5.3 (prove),4,6,7,10,12,13

1.6.1,3

1.7.5,6

1.8.3,10-14 1.9.2,3 (optional)
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FIG. 3: Examples of fields with non-zero curl. Left - ~ω × ~r, velociity field of a rotating platform,

similar to magnetic field inside a wire with current coming out of the page. Right - ~ω×~r/r2, similar

(in 2D) to magnetic field outside an infinitely thin wire with current coming out of the page.

Dr. Vitaly A. Shneidman, Lectures on Mathematical Physics, Phys 780, NJIT

E. Divergence theorem (Gauss)

∫ ∫ ∫

V

(

∇̂ · ~F
)

dV =

∫ ∫

S

~F · ~n da (21)

Proof: first prove for an infinitesimal cube oriented along x, y, z; then extend for the full

volume HW: (optional) do that

HW: verify the Divergence theorem for ~F = ~r and spherical volume

HW: 1.11.1-4

F. Stokes theorem

∫ ∫

S

(

∇̂ × ~F
)

· ~n da =

∮

~F · d~l (22)

Proof: first prove for a plane (”Green’s theorem”) starting from an infinitesimal square;

then generalize for arbitrary, non-planar surface

HW: verify Stokes theorem for ~F = ω × ~r and a circular shape. HW: 1.12.1,2
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II. DIRAC DELTA

A. Basic definitons

δ(x) = 0 , x 6= 0 (23)

δ(x) =∞ , x = 0
∫ ε

−ε
δ(x) dx = 1 , for any ε > 0

Then,

∫ ε

−ε
δ(x)f(x) dx = f(0) , for any ε > 0 (24)

Note: the real meaning should be given only to integrals. E.g., δ(x) can oscillate infinitely

fast, which does not contradict δ(x) = 0 once an integral is taken.

Sequences leading to a δ-function for n→∞:

δn(x) = n for |x| < 1/2n , 0 otherwise (25)

δn(x) =
n

π

1

n2x2 + 1
(26)

δn(x) =
n√
π
exp

(

−n2x2
)

(27)

δn(x) =
sin(nx)

πx
(28)

δn(x) =
n

2
exp (−n|x|) (29)

HW: check normalization and reproduce plots

Derivative:

∫

δ′(x)f(x) = −f ′(0) (30)

HW: Show the above by integrating by parts; verify explicitly by using eq.(25); note that for finite

n derivative of eq.(25) leads to ±δ

10



-2 -1 1 2

0.5

1

1.5

2

2.5

-2 -1 1 2

0.5

1

1.5

2

2.5

-2 -1 1 2

-1

1

2

3

4

5

-2 -1 1 2

0.5

1

1.5

2

2.5

3

3.5

4

FIG. 4: Various represenations of δn which lead to Dirac delta-function for n→∞ - see eqs.(26-29).
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III. APPLICATIONS OF GAUSS THEOREM

A. Laplacian of 1/r

∆

(

1

r

)

= −4πδ (~r) (31)

B. Integral definitions of differential operations

∇̂ · ~a = lim
V→0

1

V

{
~a · d~S (32)

∇̂φ = lim
V→0

1

V

{
φd~S (33)
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C. Green’s theorems

y
dV

(

u∆̂v − v∆̂u
)

=
{

d~S ·
(

u∇̂v − v∇̂u
)

(34)

y
dV

(

u∆̂v + ∇̂u · ∇̂v
)

=
{

d~S ·
(

u∇̂v
)

(35)

D. Vector field lines

(not in Arfken )

FIG. 5: Geometric meaning of Gauss theorem. The number of lines (positive or negative) is the

flux. Lines are ”conserved” in the domains with zero divergence.
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IV. EXACT DIFFERENTIALS

V. MULTIDIMENSIONAL INTEGRATION

A. Change of variables

∫ ∫

R

f(x, y) dx dy =

∫ ∫

R∗

f [x(u, v) , y(u, v)] |∂(x, y)/∂(u, v)| dudv (36)

Here |∂(x, y)/∂(u, v)| is the Jacobian. The 3D case is similar.

Cylindrical: (r, φ, z) with

x = r cosφ , y = r sinφ (37)

J = |∂(x, y, z)/∂(r, φ, z)| = |∂(x, y)/∂(r, φ)| = r

HW: show the above

Spherical: (r, θ, φ) with

x = r sin θ cosφ , y = r sin θ sinφ , z = r cos θ , (38)

J = −r2 sin θ (39)

HW: show the above

Solid angle:

dΩ ≡ dA

r2
=

1

r2

dV

dr
= sin θ dθ dφ (40)
∫

dΩ = 4π

HW: show the above

B. Multidimensional δ-function

δ (~r − ~r0) = δ (x− x0) δ (y − y0) δ (z − z0) (41)

δ (u, v, w) =

∣

∣

∣

∣

∂(x, y, z)

∂(u, v, w)

∣

∣

∣

∣

δ (x− x0) δ (y − y0) δ (z − z0) (42)

the rest will be discussed in class.
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VI. CURVED COORDINATES

A. Metric tensor

dl2 = gikdqidqk = d~q · ĝ · d~q (43)

Orthogonal coordinates:

gik = h2
i δik (no summation) (44)

HW: Prove Green’s theorems.

1.10.1,2,5.

1.13.1,4,8,9

2.1.2,5

2.4.9, 2.5.9,18,19.

Get gik explicitly for polar coordinates.
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VII. MATRICES

A. Geometric meaning of linear systems of equations

in class

B. Vector space and Gram-Schmidt ortogonalisation

in class

HW: 3.1.1-3,6

C. Rectangular matrices, product

Examples of matrices, vector-rows and vector columns. Index-free notations. Innner

and outer product. Transposition. Special matrices (identity, diagonal, symmetric, skew-

symmetric, triangular).

D. Rank of a matrix

Definition. Equivalence of row and column rank.

Vector space: if ~a and ~b part of v.s., then α~a+ β~b also.... Dimension, basis.

1. Rank and linear systems of equations (not in Arfken )

Submatrix and augmented matrix.

dim(A) = m× n, dim (~x) = n

Â · ~x = ~b (45)

a) existence: if rank(A) = rank
(

Ã
)

, Ã ≡
(

A|~b
)

b) uniqueness: if rank(A) = rank
(

Ã
)

= n

15



c) if rank(A) = rank
(

Ã
)

= r < n - infinitely many solutions. Values of n− r variables can

be chosen arbitrary.

Homogeneous system:

Â · ~x = ~0 (46)

a) alvays has a trivial solution ~x = ~0

b) if rank(A) = n this solution is unique

c) if rank(A) = r < n non-trivial solutions exist which form a vector space -null space-

(together with ~x = ~0) with dim = n− r.

For m < n (fewer equations than unknowns) - always non-trivial solution.

E. Formal operations with matrices:

A = B

αA , det(αA) = αn detA

AB can be zero

[A,B]

Jacobi identity. Commutation with diagonal matrix (the other must be diagonal too!)

F. Determinants

Explicit calculations. Operations with columns. Minor.

Square n× n matrix:

rank(A) < n ⇐⇒ det(A) = 0 (47)

Applications to linear equations. Cramer’s rule: x1 = D1/D, . . ..

Other properties:

detA = detAT

det(A.B) = det(B.A) = det(A) det(B) (48)
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G. Inverse of a matrix

det(A) 6= 0

(

A−1
)

jk
=

1

det(A)
(−1)j+kMkj (49)

(note different order!)

(AB)−1 = B−1A−1 (50)

HW: find inverse of a 2× 2 matrix with elements a, b, c, d.

H. Trace

tr(A) ≡ Aii , tr(A−B) = tr(A)− tr(B) (51)

tr(AB) = tr(BA) (52)

HW: 3.2.6(a),7,9∗,10-13,20,23∗,24,26,28,29,33

I. Similarity transformations (real)

Let ”operator” A

~r1 = A · ~r

while B changes coordinates

B · ~r = ~r′

Look for new A′ so that

~r′1 = A′ · ~r′

Then

A′ = BAB−1 (53)

17



If B orthogonal

A′ = BABT (54)

HW: 3.3.1,2,8,9∗,10,12-14∗,16

J. Complex generalization

A† ≡ (A∗)T

H† = H -Hermitian

U † = U−1 - unitary

(AB)† = B†A† (55)

〈~a|~b〉 = a∗i bi , ||~a|| =
√

〈~a|~a〉 (56)

Hermitian:

〈a|H|b〉 = 〈b|H|a〉∗ (57)

Unitary transsformation

A′ = UAU † (58)

HW: reproduce eqs. 3.112-115

3.4.1,3-8,12∗,14,26(a)

K. The eigenvalue problem

Â · ~x = λ~x (59)

18
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FIG. 6: Typical spectra of an orthogonal (blue), symmetric or Hermitian (red) and skew-symmetric

(green) matrices.

(

Â− λÎ
)

· ~x = ~0 (60)

Thus,

det
(

Â− λÎ
)

= 0 (61)

L. Spectrum

1. Hermitian: λi - real

proof in class

2. Unitary: |λi| = 1

proof in class
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M. Eigenvectors

Eigenvectrors corresponding to distinct eigenvectors are orthogonal. This is true for both

symmetric and orthogonal matrices. However, for orthogonal matrices the eigenvalues, and

hence the eigenvectors will be complex. The definiton of the inner (dot) product then needs

to be generalised:

~a ·~b =
N
∑

i

āibi (62)

where bar determines complex conjugation.

N. Similarity transformation

Ã = P−1 · A · P (63)

with non-singular P .

Theorem 3 Ã has the same eigenvalues as A and eigenvectors P−1~x where ~x is an

eigenvector of A.

O. Diagonalization by similarity transformation

Let ~x1 , ~x2 , . . . ~xn be eigenvectors of an n × n matrix A with eigenvalues λ1 , . . . , λn.

Construct a matrix X with ~x1 , ~x2 , . . . ~xn as its columns. Then

D = X−1 · A ·X = diag [λ1 , . . . , λn] (64)

HW: KR., p. 355, 1-3 (complete diagonalization); 4-6

1. Specifics of symmetric matrices

If matrix A is symmetric, matrix X is orthonormal (or can be made such if normalised

eigenvectors

~ei =
~xi√
~xi · ~xi

20



are used). Then,

D = XT · A ·X (65)

(orthogonal transformation) gives a diagonal matrix.

Major application: Quadratic forms

Q = ~x · A · ~x =
n
∑

ij

xiAijxj (66)

(a scalar!). With

y = XT · x (67)

one gets

Q = ~y ·D · y = λ1y
2
1 + . . .+ λny

2
n (68)

”Positively defined” - all λi > 0

Examples:

2. non-symmetric matrix via non-orthogonal similarity transformation

A =





0 1

−1 0





Matrix of eigenvectors (columns)

X =





−i i

1 1





X−1AX =





i 0

0 −i





3. Symmetric matrix via orthogonal transformation

A =





0 1

1 0




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Eigenvectoros (columns, normalized):

O =





− 1√
2

1√
2

1√
2

1√
2





OTAO =





−1 0

0 1





4. Hermitian matrix via unitary transformation

A =





0 −i
i 0





U =





i√
2
− i√

2

1√
2

1√
2





U †AU =





−1 0

0 1





P. Spectral decomposition

H =
∑

i

λi|ei〉〈ei| (69)

Î =
∑

i

|ei〉〈ei| (70)

work-through: Examples 3.5.1,2

Q. Functions of matrices

eA = Î + A+
1

2
AA+ . . .

HW: derive eq. 3.170a
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det
(

eH
)

= etr(H) (71)

Spectral decomposition law:

f(H) =
∑

i

f (λi) |ei〉〈ei| (72)

HW: 3.5.2,6,8*,10,16-18,30

1. Exponential of a matrix: detailed example

Consider a matrix

Â =





0 2

−2 0





• find eigenvalues

With Î being a 2× 2 identity matrix

det
(

Â− λÎ
)

= 4 + λ2 = 0

thus

λ1,2 = ±2i , i =
√
−1

• find eigenvectors Let ~a = (x1 , x2). Then A · ~a = λ1,2~a implies

(2x2 , −2x1) = ±2i (x1 , x2)

Thus

x2 = ±ix1

or can select x2 = 1, then

~a1 = (−i , 1)

~a2 = (+i , 1)

• construct a matrix X which would made Â diagonal via the similarity transformation.

Construct X as transpose of a matrix made of ~a1 , ~a2:

X̂ =





−i i

1 1




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with the inverse

X̂−1 =





i/2 1/2

−i/2 1/2





Then

X−1 · A ·X =





2i 0

0 −2i





as expected.

• Find exp
(

Â
)

.

Use an expansion

exp
(

Â
)

=
∞
∑

0

1

n!
Ân

For every term

An = A · A . . . A = XX−1AXX−1s . . . XX−1AXX−1

(since XX−1 = I). Introducing the diagonal

Ã = X−1AX

one thus has

An = XÃnX−1

and

exp(A) = X exp
(

Ã
)

X−1 = X





eλ1 0

0 eλ2



X−1 =





cos 2 sin 2

− sin 2 cos 2





R. Applications of matrix techniques to molecules

1. Rotation

(Note: in this section Î is rotational inertia tensor, not identity matrix)

We will treat a molecule as a solid body with continuos distribution of mass described

by density ρ. In terms of notations this is more convenient than summation over discrete

atoms. Transition is given by a standard
∫

ρ (~r) d V (. . .) →
∑

n

mn (. . .) (73)
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with mn being the mass of the n-th atom

For a solid body

~v = ~Ω× ~r

The kinetic energy is then

K =
1

2

∫

ρ (~r) v2 (~r) d V (74)

With
(

~Ω× ~r
)2

= Ω2r2 −
(

~Ω · ~r
)2

one gets

K =
1

2
~Ω · Î · ~Ω (75)

Here

Iik =

∫

ρ
(

r2δik − rirk
)

d V (76)

is the rotational inertia tensor.

If the molecule is symmetric and axes are well chosen from the start, tensor I will be

diagonal. Otherwise, one can make it diagonal by finding principal axes of rotation:

Î = diag {I1 , I2 , I3} (77)

HW. Show that for a diatomic molecule with r being the separation between atoms

I = µr2 , 1/µ = 1/m1 + 1/m2 (78)

with µ being the reduced mass.

2. Vibrations of molecules

We will need some information on mechanics.

Lagrange equation

L
(

~q, ~̇q, t
)

= K − U (79)

d

dt

∂L
∂q̇i

=
∂L
∂qi

(80)
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HW: show that for a single particle with K = 1/2mẋ2 and U = U(x) one gets the standard

Newton’s equation.

Molecules

Let a set of 3D vectors ~rn(t) (n = 1, . . . , N) determine the positions of atoms in a

molecule, with r0
n being the equilibrium positions. We define a multidimensional vector

~u(t) =
(

~r1 − ~r0
1 , . . . , ~rN − ~r0

N

)

(81)

With small deviations from equilibrium, both kinetic and potential energies are expected to

be quadratic forms of ~̇u and ~u:

K =
1

2
~̇u · M̂ · ~̇u > 0 (82)

U =
1

2
~u · k̂ · ~u ≥ 0 (83)

Introduce ”inertial matrix”

M̂ =
∂

∂~̇u

∂

∂~̇u
L (84)

and ”elastic matrix”

k̂ = − ∂

∂~u

∂

∂~u
L (85)

Then the Lagrange equations take the form:

M̂ · ~̈u = −k̂ · ~u (86)

We look for a solution

~u(t) = ~u0 exp (iωt) (87)

−ω2M̂ · ~u0 + k̂ · ~u0 = 0 (88)

M̂−1 · k̂ · ~u0 = ω2~u0 (89)
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ω2 - eigenvalues of a matrix M̂−1 · k̂ (”secular matrix”).

Normal coordinates

Once the secular equation is solved, one can find 3N generalized coordinates Qα which

are linear combinations of all 3N initial coordinates, so that

L =
1

2

∑

α

(

Q̇2
α − ω2

αQ
2
)

(90)

Qα determine shapes of characteristic vibrations

Example: diatomic molecule

L =
1

2

(

m1ẋ
2
1 +m2ẋ

2
2

)

− 1

2
k1 (x2 − x1)

2

x2 = −m1x1

m2

, X = x2 − x1

Now

L =
1

2
µẊ2 − 1

2
k1X

2

with

µ =
m1m2

m1 +m2

(91)

and

ω =

√

k1

µ

Above is a human way to solve the problem - we eliminated the motion of center of mass

from the start and then found the frequency. A more formal, matrix way is...(in class)
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VIII. HILBERT SPACE

work-through: Ch. 10.4 in Arfken READING: Ch. 10.2-4

Note: at this stage, you can treat the ”weight function” w(x) ≡ 1

A. Space of functions

in class

B. Linearity

in class

C. Inner product

〈f |g〉 =
∫ b

a

dx f ∗g (92)

||f ||2 =

∫ b

a

dx |f |2 (93)

Orthonormal basis |ei〉
〈ei|ej〉 = δij

fi = 〈ei|f〉 , |f〉 =
∑

i

fi|ei〉 (94)

∑

i

|ei〉〈ei| = Î → δ (x− y) (95)

Parceval identity:

||f ||2 =
∑

i

|fi|2 (96)
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D. Completeness

lim
n→∞

∫ b

a

dx

∣

∣

∣

∣

∣

f(x)−
n
∑

i

fiei(x)

∣

∣

∣

∣

∣

2

= 0 (97)

E. Example: Space of polynomials

Non-orthogonal basis

1, x, x2, . . .

Gram-Schmidt orthogonalization (in class). Leads to Legendre polynomials.

F. Linear operators

L̂ (a|f〉+ b|g〉) = aL̂|f〉+ bL̂|g〉

Lik = 〈ei|L|ek〉

1. Hermitian

〈f |L|g〉 = 〈g|L|f〉∗ , Lik = L∗
ki (98)

∫ b

a

dx f ∗(x)
(

L̂g(x)
)

=

∫ b

a

dx g(x)
(

L̂f(x)
)∗

(99)

2. Operator d2/dx2 . Is it Hermitian?

(in class)

HW: 10.1.15-17

10.2.2,3,7*,13*,14*

10.3.2

10.4.1,5a*,10,11

work-through: Examples 10.1.3 , 10.3.1
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IX. FOURIER

work-through: Arfken , Ch. 14

∫ π

−π
dx 1 · cos(nx) = 2πδn 0 (100)

∫ π

−π
dx 1 · sin(nx) = 0

For m, n 6= 0:

∫ π

−π
dx cos(nx) cos(mx) = π δmn (101)

∫ π

−π
dx cos(nx) sin(mx) = 0

∫ π

−π
dx sin(nx) sin(mx) = π δmn

HW: show/check the above

A. Fourier series and formulas for coefficients

f(x) = a0 +
∞
∑

n=1

(an cos(nx) + bn sin(nx)) (102)

Coefficients:

a0 =
1

2π

∫ π

−π
dx f(x) (103)

an =
1

π

∫ π

−π
dx f(x) cos(nx) (104)

bn =
1

π

∫ π

−π
dx f(x) sin(nx) (105)

Note: even function: bn = 0; odd function: an = 0.

30



-3 -2 -1 1 2 3

-1

-0.5

0.5

1

FIG. 7: Approximation of a square wave by finite numbers of Fourier terms (in class)
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FIG. 8: Periodic extension of the original function by the Fourier approximation

B. Complex series

1. Orthogonality

”Scalar product” of two functions f(x) and g(x) on an interval [−π, π]:

〈f |g〉 =
∫ π

−π
dx f(x)∗g(x) (106)

Introduce:

en(x) = einx (107)

Then:

〈en| em〉 ≡
∫ π

−π
dx ei(m−n)x = 2πδmn (108)

(note: more compact than real sin/cos). HW: Show/check that
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2. Series and coefficients

f(x) =
n=∞
∑

n=−∞
cne

inx (109)

or

|f〉 =
n=∞
∑

n=−∞
cn |en〉 (110)

From orthogonality:

cn =
1

2π
〈en| f〉 =

1

2π

∫ π

−π
dx e−inxf(x) (111)

Again, note much more compact than sin/cos.

-3 -2 -1 1 2 3

5

10

15

20

FIG. 9: Approximations of ex by trigonometric polynomials (based on complex Fourier expansion).

Red - 2-term, green - 8-term and blue - the 32 term approximations.

HW: Expand δ(x) into einx.

From Arfken :

14.1.3,5-7

14.2.3

14.3.1-4, 9a, 10a,b , 12-14

14.4.1,2a,3
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C. Fourier vs Legendre expansions

(not in Arfken )

Consider the same square wave f(x) = sign(x)θ(1− |x/π|) and an orthogonal basis

|pn〉 = Pn

(x

π

)

Then

|f〉 =
∑

n

cn|pn〉 , cn = 〈pn|f〉/||pn||2

-4 -2 2 4

-2

-1

1

2

FIG. 10: Approximation of a square wave by n = 16 Fourier terms (blue) and Legendre terms

(dashed)
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X. FOURIER INTEGRAL

work-through: Ch. 15 (Fourier only). Examples: 15.1.1, 15.3.1

HW: 15.3.1-5,8,9,17a. 15.5.5

A. General

in class

B. Power spectra for periodic and near-periodic functions

Note

F [1] =
√
2πδ (k) (112)

Similarly,

F
[

e−ik0x
]

=
√
2πδ (k − k0) (113)

i.e. an ideally periodic signal gives an infinite peak in the power spectrum.

A real signal can lead to a finite peak for 2 major reasons:

• signal is not completely periodic

• the observation time is finite

This is illustrated in Fig. 12.

C. Convolution theorem

F
[∫ ∞

−∞
f(y)g(x− y) dy

]

=
√
2πF [f ]F [g] (114)
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FIG. 11: An ”almost periodic” function e−0.001x (sin (3x) + 0.9 sin(2πx))

D. Discrete Fourier

Consider various lists of N (complex) numbers. They can be treated as vectors, and any

vector ~f can be expanded with respect to a basis:

~f =
N
∑

n=1

fn~en (115)

with

~e1 = (1, 0, 0, . . .) , ~e2 = (0, 1, 0, . . .) , . . . (116)

Scalar (inner) product is defined as

~f · ~g =
N
∑

n=1

f ∗
ngn (117)

(note complex conjugation).

Alternatively, one can use another basis with

~en
′ =

(

1, e2πi (2−1) (n−1)/N , . . . , e2πi (m−1) (n−1)/N , . . . , e2πi (N−1) (n−1)/N
)

(118)

Note: ssome books use m instead of our (m− 1) but their sum is then from 0 to N − 1, so

it is the same thing.

1. Orthogonality

~en
′ · ~ek ′ = Nδnk (119)
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FIG. 12: Power spectrum of the previous function obtained using a cos Forier transformation

(infinite interval) and finite intervals L = 10 and L = 100.

Indeed,

~en
′ · ~ek ′ =

N
∑

m=1

r(k−n)(m−1) , r ≡ e2πi/N (120)

Summation gives

~en
′ · ~ek ′ =

1− r(k−n)N

1− r(k−n)
(121)

Note that for k, n integer the numerator is always zero. The denominator is non-zero for

36



any k − n 6= 0, which leads to a zero result. For k = n one needs to take a limit k → n

HW: do the above

Now we can construct a matrix (”Fourier matrix” F̂ ) of ~en
′ for all n ≤ N and use it to

get components in a new basis

F̂ · ~f (122)

This will be Fourier transform. Applications will be discussed in class.

HW: construct F̂ for N = 3
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XI. COMPLEX VARIABLES. I.

A. Basics: Permanence of algebraic form and Euler formula; DeMoivre formula;

multivalued functions

in class

HW: 6.1.1-6,9,10,13-15,21

B. Cauchy-Riemann conditions

f(z) = u(x, y) + iv(x, y)

If df/dz exists, then

u′x = v′y , u
′
y = −v′x (123)

Also note:

∆̂u = ∆̂v = 0 (124)

and

u′x
u′y

v′x
v′y

= −1 (125)

1. Analytic and entire functions

work-through: Examples 6.2.1,2

HW: 6.2.1a,2,8*

C. Cauchy integral theorem and formula

Any f(z), analytic inside a simple C:
∮

C

f(z)dz = 0 (126)
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proof in class (from Stokes)

HW: 6.3.3

f (z0) =
1

2πi

∮

C

dz
f(z)

z − z0

(127)

f (z0)
(n) =

n!

2πi

∮

C

dz
f(z)

(z − z0)
n+1 (128)

HW: 6.4.2,4,5,8a

D. Taylor and Laurent expansions

in class

work-through: Ex. 6.5.1

HW: 6.5.1,2,5,6,8,10,11

E. Singularities

in class

work-through: Ex. 6.6.1

HW: 6.6.1,2,5
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XII. COMPLEX VARIABLES. II. RESIDUES AND INTEGRATION.

HW: 7.1.1, 2a,b , 4,5,7-9,11,14,17,18

in class

A. Saddle-point method

skip ”theory” from Arfken

HW: derive Stirling formula from

Γ(n+ 1) =

∫ ∞

0
dxxne−x , n→∞

Integral representation of Airy function:

Ai(x) =
1

π

∫ ∞

0

cos

(

z3

3
+ zx

)

dz (129)

Asymptotics:

Ai[xÀ 1] ∼ 1

2
√
πx1/4

e−
2

3
x3/2

(130)

Ai[x→ −∞] ∼ 1√
π(−x)1/4 sin

{

2

3
(−x)3/2 + π

4

}

(131)
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FIG. 13: The function φ(z) from the integrand eφ of the Airy function Ai(s) in the complex z-plane

(s = 9). Blue lines - Re[φ] = const, red lines - Im[φ] = const. The saddles are at z = ±i√s; arrow

indicates direction of integration.
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FIG. 14: Same, for s = −9.
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