VERIFICATION OF GAUSS THEOREM (GT)

Thiis is a Mathematica-based analytical companion to numerical
MATLAB study.

1 Theory

1.1 General

Define total flux ® through a closed surface

D = ]{ E-dA (1)
then, GT states
d = 47kQ) (2)

Here @ is the total charge enclosed inside the surface; otherwise the actual
location of the charge, size and shape of the surface and all outside charges do
not matter.

The electric field of a single charge ¢ is given by
E = kqr/r® (3)

where 7 runs from the charge towards the observation point. To verify (not

provel) the GT for a single charge one needs to evaluate the flux ® via the
integral and compare it with 47k(Q, where Q = ¢ for the charge inside the
surface and @ = 0 if the charge is outside.

1.2 Specific geometry and parameters

Consider kg = 1 and the surface in the shape of a cube centered at the origin,
with side 2. The six faces of the cube have normals

7% = (+1,0,0), 7% = (0,£1,0), @* = (0,0, %1) (4)

The charge is located at (h,0,0) so that
7= (z—h,y,z2)
To find the flux through a given face of the cube we note
dA = iidA (5)
(with 7 being the corresponding normal) and introduce

¢=FE-i (6)



for each of the faces, evaluating a corresponding integral [ ¢ dA. The total flux
is represented as a sum of 3 contributions

D = P74 DY 4 O

each corresponding to a net flux through both faces with a normal parallel (an-
tiparallel) to an indicated axis. For example, ¢* evaluated on the upper or lower
faces with z = £1 is given by

1
W (h )

z

This gives
! ! ~1+h 1+h
o* = 2/ d:v/ dy ¢* = 4 | —ArcTan i + ArcTan i (7)
-1 -1 V2+ (=14 h)? 2+ (14 h)?

From symmetry, ®¥ is the same.
Next, for the faces at z = £1

+1-h
(L= h)2 +y2 + 22)*/?

Pio=+
and
1 1
o° =/ dz/ dy (67 + &%) = (8)
1 ~1

—4ArcCot [(—1 + VB + (—2+ h)h} + 4ArcCot [(1 +RN3 T h(2 T h)}

Note that the total ® appears as a function of h. However, for any |h| < 1
it evaluates to 47 as expected, while for h > 1 (charge outside the cube) ® = 0.
Actual verification is done analytically for h = 0 (charge at the center), h = 1/2,
h = 2, and numerically for a random 0 < h < 1.



2 Mathematica input (bold) and output

r= {m - h,y)z};
e=r/(rr)(3/2)

—h+ax Y z
((=ht2)2+y2+22)2/2 7 ((=heta)2+y?+22)%27 ((—h+ta)?+y2+22)°/2

nz = {0,0, Sign[2]};
phiz = e.nz/.z — 1
1

(L+(—h+a)?+y?)*/2

hiz =
2Integrate[phiz, {z, —1,1},
{y1 _17 1}7
Assumptions — h"2 < 1]//
FullSimplify

4 (—ArcTan [Hh] + ArcTan [W}>
2+(—1+h)2 2+(1+h)?
Phiy = Phiz;
Clear[nx]; nx = {Sign[z], 0, 0}
{Sign[z], 0,0}
phixl = enx/.x — 1
1—h
((1=h)2+y?+22)3/2

(F1=h) P 422)77

Integrate[(phix1 + phix2),
{za _1, 1}, {y7 _1’ 1},
Assumptions — A2 < 1]//
FullSimplify

—4ArcCot [(—1 FR)VBF (2 h)h} + 4ArcCot [(1 FR)B TR T h)}

Phi = Phix + Phiy + Phiz//FullSimplify

—4ArcCot [(—1 +h)/3+(—2+ h)h} +4ArcCot [(1 +h)\/3+h(2+ h)} —8ArcTan {

1+h
8ArcTan {m}
Phi/.h— 0
4T
Phi/.h — 1/2//FullSimplify
4T
Phi/.h — Random]||
12.5664
% == 4Pi//Simplify
True
Phi/.h — 2//FullSimplify
0
(*since outside*)

—1+h
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