VERIFICATION OF GAUSS THEOREM (GT)

Thiis is a Mathematica-based analytical companion to numerical MATLAB study.

1 Theory

1.1 General

Define total flux Φ through a closed surface

$$
\begin{equation*}
\Phi=\oint \vec{E} \cdot d \vec{A} \tag{1}
\end{equation*}
$$

then, GT states

$$
\begin{equation*}
\Phi=4 \pi k Q \tag{2}
\end{equation*}
$$

Here Q is the total charge enclosed inside the surface; otherwise the actual location of the charge, size and shape of the surface and all outside charges do not matter.

The electric field of a single charge q is given by

$$
\begin{equation*}
\vec{E}=k q \vec{r} / r^{3} \tag{3}
\end{equation*}
$$

where \vec{r} runs from the charge towards the observation point. To verify (not prove!) the GT for a single charge one needs to evaluate the flux Φ via the integral and compare it with $4 \pi k Q$, where $Q=q$ for the charge inside the surface and $Q=0$ if the charge is outside.

1.2 Specific geometry and parameters

Consider $k q=1$ and the surface in the shape of a cube centered at the origin, with side 2 . The six faces of the cube have normals

$$
\begin{equation*}
\vec{n}^{x}=(\pm 1,0,0), \vec{n}^{y}=(0, \pm 1,0), \vec{n}^{z}=(0,0, \pm 1) \tag{4}
\end{equation*}
$$

The charge is located at $(h, 0,0)$ so that

$$
\vec{r}=(x-h, y, z)
$$

To find the flux through a given face of the cube we note

$$
\begin{equation*}
d \vec{A}=\vec{n} d A \tag{5}
\end{equation*}
$$

(with \vec{n} being the corresponding normal) and introduce

$$
\begin{equation*}
\phi=\vec{E} \cdot \vec{n} \tag{6}
\end{equation*}
$$

for each of the faces, evaluating a corresponding integral $\int \phi d A$. The total flux is represented as a sum of 3 contributions

$$
\Phi=\Phi^{x}+\Phi^{y}+\Phi^{z}
$$

each corresponding to a net flux through both faces with a normal parallel (antiparallel) to an indicated axis. For example, ϕ^{z} evaluated on the upper or lower faces with $z= \pm 1$ is given by

$$
\phi^{z}=\frac{1}{\left(1+(-h+x)^{2}+y^{2}\right)^{3 / 2}}
$$

This gives

$$
\begin{equation*}
\Phi^{z}=2 \int_{-1}^{1} d x \int_{-1}^{1} d y \phi^{z}=4\left(-\operatorname{ArcTan}\left[\frac{-1+h}{\sqrt{2+(-1+h)^{2}}}\right]+\operatorname{ArcTan}\left[\frac{1+h}{\sqrt{2+(1+h)^{2}}}\right]\right) \tag{7}
\end{equation*}
$$

From symmetry, Φ^{y} is the same.
Next, for the faces at $x= \pm 1$

$$
\phi_{1,2}^{x}= \pm \frac{ \pm 1-h}{\left((\pm 1-h)^{2}+y^{2}+z^{2}\right)^{3 / 2}}
$$

and

$$
\begin{gather*}
\Phi^{x}=\int_{-1}^{1} d z \int_{-1}^{1} d y\left(\phi_{1}^{x}+\phi_{2}^{x}\right)= \tag{8}\\
-4 \operatorname{ArcCot}[(-1+h) \sqrt{3+(-2+h) h}]+4 \operatorname{ArcCot}[(1+h) \sqrt{3+h(2+h)}]
\end{gather*}
$$

Note that the total Φ appears as a function of h. However, for any $|h|<1$ it evaluates to 4π as expected, while for $h>1$ (charge outside the cube) $\Phi=0$. Actual verification is done analytically for $h=0$ (charge at the center), $h=1 / 2$, $h=2$, and numerically for a random $0<h<1$.

2 Mathematica input (bold) and output

$$
\begin{aligned}
& r=\{x-h, y, z\} ; \\
& e=r /(r . r)^{\wedge}(3 / 2) \\
& \left\{\frac{-h+x}{\left((-h+x)^{2}+y^{2}+z^{2}\right)^{3 / 2}}, \frac{y}{\left((-h+x)^{2}+y^{2}+z^{2}\right)^{3 / 2}}, \frac{z}{\left((-h+x)^{2}+y^{2}+z^{2}\right)^{3 / 2}}\right\} \\
& \mathrm{nz}=\{0,0, \operatorname{Sign}[z]\} ; \\
& \text { phiz }=e . n z / . z \rightarrow 1 \\
& \frac{1}{\left(1+(-h+x)^{2}+y^{2}\right)^{3 / 2}} \\
& \text { Phiz = } \\
& \text { 2Integrate[phiz, }\{x,-1,1\} \text {, } \\
& \{y,-1,1\} \text {, } \\
& \text { Assumptions } \left.\rightarrow h^{\wedge} 2<1\right] / / \\
& \text { FullSimplify } \\
& 4\left(-\operatorname{ArcTan}\left[\frac{-1+h}{\sqrt{2+(-1+h)^{2}}}\right]+\operatorname{ArcTan}\left[\frac{1+h}{\sqrt{2+(1+h)^{2}}}\right]\right) \\
& \text { Phiy }=\text { Phiz; } \\
& \text { Clear[} \mathbf{n x}] ; \mathrm{nx}=\{\operatorname{Sign}[x], 0,0\} \\
& \{\operatorname{Sign}[x], 0,0\} \\
& \text { phix1 }=e . \mathrm{nx} / . x \rightarrow 1 \\
& \frac{1-h}{\left((1-h)^{2}+y^{2}+z^{2}\right)^{3 / 2}} \\
& \text { phix2 }=e . \mathrm{nx} / . x \rightarrow-1 \\
& -\frac{-1-h}{\left((-1-h)^{2}+y^{2}+z^{2}\right)^{3 / 2}} \\
& \text { Phix = } \\
& \text { Integrate[(phix1 + phix2), } \\
& \{z,-1,1\},\{y,-1,1\} \text {, } \\
& \text { Assumptions } \left.\rightarrow h^{\wedge} 2<1\right] / / \\
& \text { FullSimplify } \\
& -4 \mathrm{ArcCot}[(-1+h) \sqrt{3+(-2+h) h}]+4 \operatorname{ArcCot}[(1+h) \sqrt{3+h(2+h)}] \\
& \text { Phi }=\text { Phix }+ \text { Phiy }+ \text { Phiz//FullSimplify } \\
& -4 \operatorname{ArcCot}[(-1+h) \sqrt{3+(-2+h) h}]+4 \operatorname{ArcCot}[(1+h) \sqrt{3+h(2+h)}]-8 \operatorname{ArcTan}\left[\frac{-1+h}{\sqrt{2+(-1+h)^{2}}}\right]+ \\
& \text { 8ArcTan }\left[\frac{1+h}{\sqrt{2+(1+h)^{2}}}\right] \\
& \text { Phi/. } h \rightarrow 0 \\
& 4 \pi \\
& \text { Phi/. } h \rightarrow 1 / 2 / / \text { FullSimplify } \\
& 4 \pi \\
& \text { Phi/. } h \rightarrow \text { Random[] } \\
& 12.5664 \\
& \%==4 \mathrm{Pi} / / \text { Simplify } \\
& \text { True } \\
& \text { Phi/. } h \rightarrow 2 / / \text { FullSimplify } \\
& 0 \\
& \text { (*since outside*) }
\end{aligned}
$$

