For all examples below construct general equations for the tangent line and the normal at arbitrary point $\left(x_{0}, y_{0}\right)$. Evaluate for $x_{0}=1.5$ and compare with plots. Extra credit. Evaluate at $x_{0}=-1$ and add your lines to the plots.

$$
-\frac{x^{2}}{4}+\frac{y^{2}}{4}=1
$$

2

$-2 x-y^{2}=-6$

Extra credit. Galileo's parabola.
Consider

$$
\begin{equation*}
y(t)=v_{0 y}-\frac{1}{2} g t^{2} \tag{1}
\end{equation*}
$$

for the y-component of the projectile motion starting from $y=0$. Find

$$
\begin{gathered}
v_{y}(t)= \\
a_{y} \equiv \frac{d^{2} y}{d t^{2}}= \\
t_{\max }=
\end{gathered}
$$

(time to reach $y_{\text {max }}$) and

$$
y_{\max }=
$$

Find the time to get a distance H below zero (i.e., $y(t)=-H)$:

$$
t=
$$

explain the 2nd root. Find

$$
v_{y}(t)=
$$

Try algebra first, then use $v_{0}=10, \alpha=45^{\circ}, H=1, g=10$ (in metric units -only for math- in physics $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$).

Now include the x-motion:

$$
x=v_{x} t
$$

Exclude t, and find $y(x)$. Sketch. Find

$$
\begin{aligned}
\frac{d y}{d x} & = \\
\frac{d^{2} y}{d x^{2}} & =
\end{aligned}
$$

Construct a general equations for the tangent line; evaluate when $y=-H$. Compare the slope with v_{y} / v_{x}. Find the speed at this level

$$
v=\sqrt{v_{x}^{2}+v_{y}^{2}}=
$$

