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Size distribution of new-phase particles during transient

condensation of a supercooled gas
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The homogeneous nucleation of the liquid phase upon rapid cooling of a gas is considered in the framework of
the Zel’dovich—Frenkel theory, and the time-dependent distribution function of nuclei in size space and the
nucleation rate are determzined. It is shown that in the transient case a certain modification must be made to
the basic kinetic equation at high supersaturations of the gas to allow for the discrete number of molecules in
a nucleus. The form of the distribution function is found in the leading and next-higher approximations in the
reciprocal of the activation barrier. Comparison with 2 numerical simulation shows that the results are quite

accurate.

INTRODUCTION e

Aceording to Zel'dovich,! the formation of new-phase
nuclet can be described by a kinetic equation of the Fok-
Ker TPlanck type in "size space”

o __ai

Al =DV T a
Here g is the number of molecules ina nucleus (the
ngiza™, f(g, t) is the nonequilibrium distribution function,
j{g, t) is the flux in size space, D is the diffusion coef-
ficient, and N is the equilibrium distribution function,
which ig related to the change in the free energy of the
system upon formation of a nucleus of a given size: N ~

exp [% /Kf]. The critical size g , corresponds to the

‘maximum of the fimetion &{g) /kT. In the theory con-

sidered here, this maximum value (which is agsumed

large) determines the activation barrter of the nucleation

process.

At fixed parameters gx, 9 4, eic,, the system has 2
steady equilibrium distribution

Hey =g N (gyerio(£55) @)

- with a size-independent value of the flux

P D(g.) N{g.
fe=T= Y

In reality, changes in the external conditions and de-

pletion of the initial phase by the nuclei that form cause
the level of metastability of the system and hence the nu-
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' (A is the width of the critical region).
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cleation process to become time dependent, Transience
in the formation of the largest nuclei can be particularly
important, since these nuclei will govern the breakoff of
nucleation and the transition of the system to the agymp-
totie regime.’* The transient problem has hitherto been
considered mainly from the standpoint of relaxation to
the steady distributlon (see review®).

In the present study, new-phase nucleation is in-
vestigated in the case of a time—dependent level of meta-
stability of the initial-phases; the characteristic times for
changes in the activation barrier here can be comparable -
to the time for relaxation to the steady distribution, and

" g0 transient effects can be important, Situations of this

type can occur in molecular beams, which are character-
ized by high rates of cooling,® in condensed media,’ and
at temperatures near a critical potnt where the relaxa-
tion to the steady distribution slows down,

Asg in the steady-state treatment,! the guantity & =

- A/g »is taken as the small parameter of the problem.

The condition & <« 1 is satisfied if the height & 4/kT of
the activation barrier is so large that its sguare root
(@ /KT /2 is also large.

In Sec. 1 we construct asymptotically (in €) exact
expressions for the distribution function and the flux of
puclei in size space. We determine the transient miclea—
tion rate, '

In Sec. 2 we consider the nucleation of a liquid phase
at high supersaturations of the gas, when the initial equa-
tion applies only in a comparatively small neighborhood of

" the eritical size. We obtfain a kinetic equation which is

valid for all sizes below the critical size and goes over

. to Eq. (1) in the critical region, and we construct the time-

dependent solution to the leading and next-higher orders
in £. The results are compared thh a numertcal stmula-
tion. :
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in the Appendi.x we give an asymptotically exact solu-
tion for the relaxation to steady nucleation.

1. TRANSIENT DISTRIBUTION OF NUCLEI IN SIZE
SPACE AND THE RATE OF NUCLEATION——- -

In the classical theory of nucleation® the nuclei are
treated macroscopically, and the energy ¢ can be divided
into surface and volume parts

2@
kT

1= {dn} (v )% S (4)

=.gh’1:5-~ [kT

lg’h .

Here 8 is the degree of supersaturation of the gas, vy, i8

the molecular volume of the liquid phase, and ¢ is the co~

efficient of surface tension. The basic small parameter
of the problem, € = A /g ,, is of the form (& «/ 3kT)172,
At moderate gas densities the diffusion coefficient D(g) in
Eqg. (1) is given as agp Bsg, where o, is the condensation
coefficient and gs; is the frequency of collisions between
gas molecules and the nuclear surface Sge

If the thermodynamic parameters of the gas {tem—
perature, pressure, ete,) are time dependent, the coef-
- ficients in the expression for the work of formation of &
nmucleus in (4} will vary with time. In the leading approxi-
. mation in c}/ kT (q is the heat of the phase transition per
-molecutey!’ it is necessary to consider the time deriva-
‘tives only of quantities contatning In 8, with the result

g & P, (5).

We shall show that the function (5), which contains a
time derivative of the asymptotically large parameter £72,
plays the governing role in the description of the transient
nucleation, As a quantitative measure of the level of
transience one can take the guantity

e,
o= —t ——A’

wi%; N
where the time Ty = AY 2D characterizes the relaxa-
tion to the steady distribution (see Appendix).

Before we start on the solution of the problem, let
us formulate the basic asswmptions.

We assume thaf the characteristic times for changes
in the thermodynamic parameters of the initial phase
that do not exhibit anomalies on crossing the line of phase
equilibrium are much larger than 1.}, However, the
characteristic iime for changes in the height of the ac-
tivation barrier is not assumed ta be long compared to
Tyel, and we accordingly keep the quantity a in the ex~
pressions given below.

We transform the initlal equation (1) to the new un-
known function v = f/N and "size" u =g /g«

1 .2 D v D o ¢ o )
T T D T = e, =22

- The houndary conditions on Eq {6} are determined-
from the conditions that the kinetic and equilibrium dis-
tribution functions agree for nuclei of extremely small

‘7 " Sov. Phys. Tech: Phys. 32{1), January 1987

sizes! and that the total number of nuclei in the system
be finite:

e(0, =1, o{u, )= 0, w—oo. - N

Because the coefficlents of Eg. (6} vary little over a
time 7 4., and the houndary conditions (7) are independent
of time, for nuclei which are not too much larger than the
critieal size a gquasisteady size distribution is established
which is described by the equation

2 @ D - — o Y
e_sa—n"—'i‘a §7 Fa T onu= enu g, @)

The difference from the corresponding steady-state
equation is characterized by the parameter n.

We solve Eq. (8) by the method of "matched asymp-
totic expansions™ (Ref. 10).

Outside the eritical regmn, &1 15 not small, and the
terms proportlonal to £2 in Eq, (8) can be neglected, In
this case

H
]nv=n~jdau-%—
1]

«%

9

For u—1, Eq. (9) has the asymptotic form

Inv=nrn{l —a}+ nC. (10)
1 T e
. D, &7 i 25
c={ ara{uT F— )= — 3. au)

Near u = 1, where the "outer" solution {9} is not valid,

we transform to the "1nner“lz ={u—1)/e. Toleading
order in £, Eq. (8) reduces to the eguation

9% v o !

F_|.:az_7£-_2nu__0, {12)

which was considered in Ref. 11, The decaymg solutlon
of (12) for z —«w is of the form

v(z)= 13)

'%T A,_,i" erfc (2),
where iPerfe(z) is the muitiple probability integral.!?

The coefficient A_ in the last expression is deter~
mined from the condition that the agymptotic value of the .
inner solution (13) for z — —« agree with that of the outer
golution (10} for u—1;

A, =T (n1)eent,

Finally, we write out the expression for the distribu-

(14)

" tion function interms of the original variables:

1o )= Vg O+ () Mewrate(£38). g

This equation agrees with' (2) in the steady-state limit

n—0,

If the cooling rate of the gas is characterized by the

' quantlty w =—3InT/ 3t, then it is easy to show that

=t v s,
n = Y aa;g,,
-V, A.Shneidman - L . 77

Iw.m%,

ey




where & = 0'sz/3 /q (for simple liquids A ~ 1 /6, and for
water far from the critical temperature A ~1/10); ¢ ~
13sz /3 is the frequency of intermolecular collisions, It
follows from (16) that the condition n 3 1 can be satisfied
even at cooling ratés which are small compared tg the
intermolecular collision frequency: w ~Aaeg = *r< y.

Solution. (15) applies for z «<e—L, or (g — gx)/Ex < L.
An estimate of the derivative 8v /8t in the region of maxi-
mum sizes yields a condition for admissible values of n:

n €2 (® kT (D kT). an

A comparison of (17) with the condition of substantial
transience n 3 1 implies that solution (15) has meaning in
an asymptotically wide interval of ¢ooling rates.

We have been considering the initial stage of nuclea-
tion, when the height of the activation barrier decreases
with time {n > 0). Analogous estimates for the final stage
stage (n < 0) show that the solution applies only for n >
—1; for -smaller n no quasisteady regime is established
(see Appendix), However, in the stage n € —1 an ex-
ponentially small amount of the liquid phase is formed;
consequently, the intense nucleation can be described en-
tirely by solution (15).

Let us consider the flux of nuclel in size space. Near
g, we have to leading order in ¢

' vz - .
ilg, )= -——D‘__\Le"j—:r-f-%fiﬁe‘ i"terfa(z), (18)

where J is the size-independent steady-state value of the
flux (3). The function eztil-lerfe(z) for z— + » has the

asymptotic form (2/V 7 )(2z)-8, whenee it follows for 1«
z« g~ that

j=T4 (2z)™ ' (19)

{the upper bound on z derflies from the applicability con-
ditions for Eg. (12)].

The expressions obtained for the distribution function
and flux cannot be used for "large" miclei with g — g« >
g 4. Here, however, the macroscopic character of the be-
havior of the large nuclei is a simplifying circumstance.
so that one does not have to- consider equations of type (1)
containing 2 second derivative with respect to the ®aoordl-
nate" (size)., To find the size distribution of the nuclel in
this case it is sufficient to know their rate of formation I
and initial size gg.

Let us {formally for now) define the rate of nu-
cleation I as the flux at g = g;. The size distribution of
the large nueclei is of the form

g )=§"{gy t —~(g g

where T {g, &) is the time over which a nucleus growsto
size g. The ambiguity associated with the choice of g,
vanishes Lf the latter satisfies the conditions gy — g« > A.
In this case the drift component of the flux is substantially
" larger than the diffusion component and is given by asymp-
totic expression (19), which should thus be regarded as

the transient nucleation rate [. In the original variables

-8

= ]l’(n_‘—1)311(.'(:-_)2_-’_)"(@‘0:,‘;"). . . 20
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Unlike the steady nucleation rate J, Eq. (20} depends
on the initial size g, which can be chosen arbitrarily in
the interval A << g, —Ex <« g4; a8 we have said, this am-
biguity does not affect the "observable quantities, We
note that in a purely steady-state treatment! the question
of the cholce of initial size can be answered only to loga-
rithmic aceuracy; here this quantity is uniquely related
to the nucleation rate,

It is shown in the Appendix [see (A.9)] that upon
establishment of a steady distribution the flux remains
practically zero during an "incubation® time

1= ‘m‘{in Z- C’}

According to our assumptions

T exp (—ntif'trel}= Tt —1t)
and we can write Eq, {20) in the form -
I=17(—t;(g) exp (R{C —~ CNT(n+f) T 21

Thus the rate of fermation of nuclel of size g.ls de-
termined mainly by the steady-state nucleation rate at the
time t —tj{g;). The insignificant (from an asymptotic ; ..
standpoint) corrections exp{n(C —C'"] and I'(n + 1) arise
beecause of the renormalization of the incubation and re-
laxation times for a system with a time-dependent level
of metastability. Within the domain of application of the
expressions we have obtained, nucleation rate {21) na-
turally 1s smaller than the steady-state value J(t). The
difference vanishes for n <« 2/1n(® « /kT).

Formula (21} also applies to the description of nu-
cleation in other physical situations in which the expres-
sions for the work of formation of a nucleus, the diffusion
coefficient, etc. can be different {rom the ones considered.
The relaxation time here is given as before by the expres-
sion T pel = A?/2D,, and the constant C* which appears in

© the incubation time t; is evaluated from the macroscopic

equations for the decomposition of a nucleus, viz,, formuia
{A.6). Certain differences arise only in the calculation of
C if the expression for 8(#/KkT)/Bt is more complicated
than (5). We note, however, that relation (5) is typical,
since it is the coefficient muitiplying the volume term
that primarily determines the level of metastability of

‘the system.,

2, LARGE SUPERSATURATIONS OF THE GAS.
REFINEMENT QF THE SOLUTION WITH
ALLOWANCE FOR THE DISCRETE
NUMBER OF MOLECULES [N A NUCLEUS

The domain of application of the inifial equation (1)
is restricted to a neighborhood of width A near the crii-
ical slzem; it is easily verified, for example, that outside
this neighborhood the quantity DOInN/ 8g does not corre-
gpond to the maecroscopic growth rate g when the super-
saturation is large, In5 3 1, In the steady-state case the
domain of application of equation (1) can be extended to
all suberitical sizes, since the solution is determined by
the behavior of the coefficients in (1) specifically near g.
In the steady case, as is clear from the previous discus-
sion, the values of the coefficients for all g < g+ contribuis
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to the solution, and Eq. (1) must be modified so that it also
holds for small nuelei with g < g, — A,

The change in the kinetic distribution function with
allowance for only the dominant processes.of condensation
and evaporation of a single molecule can be described
by the following system of kinetic equations!:

i R . - o1 fe
T dym o =Dyl ().

22)

Equation (1) follows immediately from (22) upon re-
placement of the first differences by first derivatives.
Such 2 replacement, however, is not possible everywhere,
since outside the eritical region the equilibrium distribu-
tion function N(g) [and, for g < g« ~ A, the function fig)
itself] changes by a quantity of the order of unity when g
is replated by g+ 1, This circumstance can be taken into
account rather simply for the function N{g): the finite
difference terms should be kept as they are and not re-
placed by derivatives in the expressions which contain
only the kmown funetions, To obtain a correct confinuum
equation for the kinetic distribution functicn it is neces-
sary to transform from the function f to a new mknown
fumction which varies smoothly in size space., In the sub-
critical region g < g, , 28 we see from the solution ob-
tained earlier, vig, t) =£/N is a smoothly—varying func-
tion for which Eq. {22) implies the equation

v AN au v 1 ES
e Dwg +D‘I‘E—~2—D'¥ ral 23)
where ¥ =1 -Ng_if N, [the last term in (23) i5 retained

in order to get the corrections of order £], Equation {23)
holds not ohly in the critical region, where it is practically
. the same as Eg. (1), but also in the region of small sizes,
where Eq. (1) does not apply.

The growth of large nuclei with sizes g> g + A, for
- which this equation does not apply, can be described by
macroscopic equations with g = D%.2)

The rest of the calculation is conveniently done in the
variables x = (g / g4 /3, Equation (23) becomes

2, . 2
( e (1— qr)+ T T e — o = et 2
24)
In analogy, with the previous discussion we find that
outside the critical region

lnv=n5d$z"-il3.jg—- . . 25)

Q

To Iea;ding order in &, the equation for the function
v(z) retains the form (12) near g, and the solutlon is of
the form (13), (14), where :

In§ (lnS)e
8 144 =

C jd.?:(lns 1)

We note that this solution differs substantially from.
that obtained in Sec. 1 only at extremely large supersat-
- urations or at a high level of transience (nins ~ 8).
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@6)

In taking into account the diserete number of mole-
cules oue should, generally speaking, allow for the higher
terms in the asymptotic expansion of the solution in 2.

In the outer solution {25), the corrections that arise are
of order £? and do not have to be taken into account, since
this quantity is extremely smzll for macroscopic nuclei,
On the other hand, the corrections to the solution in the
critical.region are of order ¢ and must be taken into ac-
count for an accurate description of the behavior of the
distribution function near g, (see the comparison with the
numerical simulation helow),

Near g4 we seek a solution of the form

. ‘e z 3{z—1t
v(z)=uv,(z)exp {?:—E%} .,z ;("”_s.l . &7

where vy(2z) is the solution of (13) with a rencrmalized
value {corresponding to (26)] of the constant C,

Substituting (27) into quasisteady equation (24) and
keeping terms through order &, we obtain a linear in-
homogeneous equation for vy(z), from which

__..2":1:” = —dn(n +1)*Lerfe(z) (1 + ‘_‘;S )

28)

I —1 g
-1 Ierfc(z)(i-[—"z InS)—-—:—z-x Serfc (z).

For z —~—« the inner solution of (27), (28) has the
asymptotic behavier

vy~ fsfrexp o — fnlzfe(t + B,

which to the leading and next-higher orders in £ corre-
sponds to the asymptotic behavior of solution (25) for
x ~1,

The accuracy of the above solution was illustrated
by mumerically solving system of equations {22} in an ex-

. panding gas volume. Here the degree of transience of the

process was characterized by a variable n. Curve 1 in
Fig. 1 was obtained for n =~ 1 (n = 1.025); for the example
considered, this value corresponded to the following val-
ues of the parameter: g, = 55, In8 =~ 1.06, £ =~ 0.32.
Curves 2 and 3 show the leading (13) and the next-higher
approximation in £ without allowance for the discrete—
ness, Curve 4 shows the golution (27), (28), which takes
into account the.disorete number of molecules in a nu~
cleus; we see that this solution practically coincides with
the "exact" solution inside the critical region,

CONCLUSIONS

1, Transient nucleation of a new phase, like steady

o @

"HFG.1 -
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nucleation, can be described to asymptotic aceuracy in
the height of the activation barrier.

2. For a time-dependent level of metastability of the
initial phase, the transience of the nuecleation process is
basically characterized by the quantity n, which specifies
the change in the height of the activation barrier over a
time Tyg] (T rel is the time for relaxation to steady ou-
cleation), Substantial trahsience (n 3 1) can ocecur even
for gas cooling rates which are extremely smali com-
pared to the frequency of intermolecular collisions.

For sizes smaller than the critical size or not too
much larger, a quasisteady distribution is established
which is determined by the instantaneons configuration
of the potential relief and its first time derivative. In
the limif n — 0 the expressions obtained for the distribu-
tion function and flux correspond to the familiar steady-
state solution of Zel'dovich, Eqs. {2}, (3).

3. TUnder transient conditions the nucleation rate
differs from the steady-state rate by a pre-exponential
factor which depends on the choice of the initial size of
the incipient nuclei. However, this ambiguity does not
affect the "observable™ characteristics of the process
(the distribution function of the large nuclei), By estab-
lishing the relationship between the initial size of a nu-
cleus and the nucleation rate, one can go beyond the tra-
ditional "ogarithmic accuracy™ inherent to the purely
timme~independent treatment, in which the I.nl.tlal size of
the nucleus is strictly undetermined.

4, The discreteness of the number of molecules in
a nucleus primarily affects the macroscopic growth rate
of the nucleus. This is refiected in the distribution of
nuclei in the critical region only in the transient case
at high supersaturations of the gas. In the general case
allowance for the discreteness should be accompanied by
another asymptotic expansion in the reciproeal of the
activation barrier. Here the next-higher (after the lead-

" ing) approximation usually gives sufficient accuracy for

_praictical purposes.

APPENDIX

RELAXATION TO THE STEADY DISTRIBUTION

Let us rewrite the initial eguation (1) for a time-in-
dependent equilibrium distribution N(g) in the variables
u =g/g, and v = f/N;

e’ a Dav +D2¢'£_Azav . (4.1)

@, du Toae
After a Laplace transformation
. o
V{u, py= S die~Fv (u, t)
.. o
Eq. {A.1) reduces to the equation

62 d +D_2id_Z=A2VP i - (A.2)
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with the boundary condition V{0, p) = p~!, which follews
from (7)., Solving (A.2) in analogy with (8) by the method
of matched asymptotic expansions, we {ind the outer solu-
ti0n53) 1—u>»¢)

Vi{a, p)=p*expl—p-(a)
(4.3)
D d@

1(u}= —S dufu. u= - kT dg g:’-

]

where T(u) is the decomposition time of a nucleus, and
the inner solution [z = (u—1) /¢, |z]« e~

V(z, py=+ B(p)i"erfo(z), m=p—2§:. (A.4)

From the matching condition for asymptotes (A.4)
at z —~=o and (4,3) for u— 1, we find

B{p)=p 'T'(m+ 1)em?e™, :
{A.5)

b* 1 -1
&= Sd“{ &
L}
which gives
V(z, p)=-é—;; gm0’ (m) i" exfe (z). (A.8)

Function {A.6) has a pole at m =0, corresponding to
steady-state solution (1), The nearestpolem =-1 (p =
2D /A% determines the maximum relaxation time

- A7)

© Let us determine how the steady distribution is estab-

lished in the above-critical region z »> 1, Here (A.6) can
be replaced by the asymptotic expression

Vi p)_v—_z—?;—s o' T (1) e+ (2571, (4.8)

.- The poles of the function (A.8) are located at the
pointg m =0, —1, -2, ... and have residues (with respect
to m} of (—1)™™/{~m)!. Introducing the "incubation time™

t =" (lp (2zfe) —C") (A.S}

* we have for t » t; — 15 In2?

i
vim =g T1el

&= > ((:1»)1-}"!'_"&? {m t—ti(2) } 0

Formally the sum in (A,10) is defined only for —m «
z? [otherwise asymptotic expression (A.8) is invalid], but.

-~ because of the rapid convergence in (A,10)one ¢an extend

the summation to ~w« to get

P -.A-ti_ .
v(z. t)~ = 22 exp{—exp(-—l oot }
In an analogous way, we get for the finx
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Fz, t)=1JFexp {—exp (--

),

“Over a time t < tj the flux is practically zero.

(A.11)

Under transient condifions a function 2nvD+u is added

to (A.1} [see (6)].

In analogy with the previous case we get

(A.12)

V(@ p) == 5o o™ e ™D (m - n - 1) 1" exfe(3),

where the constant C is found in See, 1. The pole at m =
0 leads to quasisteady regime (15), which sets in over a
time which is determined by the pole at m =—n —1:

“rel{ )= etfliz + 1),
In the initial stage of nucleation (n > 0) the relaxation
time is shorter than the time for relaxation to the steady
distribution, while in the final stage of nucleation (n < 0)
it is longer, and for n £ —1 the quasisteady regime dis-
cugsed in this paper does not arise at all,

(4.13)

Dynlike &, the parameter q/kT does not play a findamental role but only
sweamlines the calculations sornewhat,

2)4 kinetic equation which holds for g > g*—4 and goes over to (1) the
critical region was obtained tn Ref. 14; the discreteness of the variable g
was taken into account in Refs. 13 and 15 in a swdy of the relaxation to the
steady distribution.

$)applying the inverse Laplace transformation to (A.3) gives the obvious
result v{u, €} = @t — r(u)), where @ the theia (step} function,
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Shaping of electron beams from convex thermionic cathodes
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i

‘The shaping of electron beams is studied for guns havmg"hxghly curved convex cathodes. It, [é shown that the
curvature of the cathode causes a specific aberration which increases the beam cross s2c’t10n. The current
)

. density distribution in the plane of the smaliest cross sectionnof the beam (the crossov
shown that the current density at the center of the crossover,

falls off with increasing curvature of the cathode.

The theory of low-current electron guns is well de-
veloped {or flat thermionic cathodes, It has been shown
that the current density distribution in the plane of the
smallest beam cross section is Gaussian and that the size
of the spot is independent of the area of the emitting sur-
~ face on the cathode,

) Many electron guns utilize convex or sharp-tip ther-
mionic cathodes having a large curvature of the emitting
~ part of the cathade surface. There are various reasons
for this. Highly curved cathodes permit the electric field
near the cathode to be shaped in such a way that it limits

the region on the cathode from which the smitted electrons

" enter the beam, This liinits the total currents in the sup-
ply and stabilization circuits,

For highly curved cathodes one can obtain strong
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is found, and it is
with it the average brightness of the beam,

which (through the Schottky effect) increase
rent density and hence the brightness of
beam, Here there are important technical
in connect\on with the fabrication of various
specia) cathodes. Experiments show that the spot dimen-
sions/in such guns depeid substantially cn the curvature
of tHe cathode and the surface area from which emission
ogCurs.

electric fie

The shaping of electron beams in convex cathodes

/~having a significant eurvature of the emitting surface dif-

fers substantially from the shaping of electron beams
from 2 flat cathode gurface on account of the spherical
aberration due to the cathode curvature, This effect has
been studied in the model of imaginary point sources
mainly for field-emission cathodes.!?' in Ref, 1 there is
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