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The paper considers the homogeneous formation of new-phase nuclei after instantancous formation of the
tnitial meta-stable state. Expressions which are asymptotically accurate in the magnitude of the nucleation
barrier are obtained for the nucleation “incubation time” and for the number of nuclei formed as a function of
time. The results are supported by the numerical solution of the fundamental kinetic equation and are
compared with known experimental data on the crystallization of glasses.

INTRODUCTION

The fundamental kinetic equation of nucleation
theory, according to Zel'dovich,® is
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‘Here g is the number of molecules in a nucleus
("size™), j is the flux in the size space, D(g) is

the diffusion coefficient, g is the macroscopic growth
rate of the nucleus, and f(g, t) and N(g) are
respectively the kinetic and equilibrium distribution
functions [the latter is proportional to the thermo-
dynamic probability for the fluctuational formation

of a nucleus N(g) ~ exp {—W{(g)/kT}, where W(g)
js the minimum work required to form a nucleus of
the prescribed size].

The nucleation rate I is usually defined as

the steady-state value of the flux jgt. A steady-
. state nucleation regime, however, is preceded by

a transient period. The existence of such a period
can have observable consequences in diverse physi-
cal situations, e.g., in the case of nucleation near
the critical temperature? or in the case of condensa-
tion of an electron-hole liquid? Evidently, the most
important questions of this kind arise in connection
witly the quenching of metastable states, in particular,
in the description of the crystallization of glasses.*”'?
The latter is due primarily to the fact that usually

in the production of glass an attempt is made to
shorten the time of intensive nucleation as much

as possible and it is comparable to the transient
period. On the other hand, experiments with glasses
provide a unigque opportunity to "freeze" the size
distribution of the nuclei and to directly count

the number of nuclei formed. This makes it possible
to compare the theoretical and experimental data,
which is done in this paper.

In Sec. 1 we discuss the various approximations
in the theory of time-dependent nucleation. Expres-
sions which are asymptotically accurate in the value
of the barrier Wp,x/kKT are obtained for the "in-
cubation time" of nucleation and the time dependence
of the number of nuclei formed. These results
are compared with data from numerical simulation.

In Sec. 2 we compare the theoretical results -
wity experimental data.®~®
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1. THEORY OF TIME-VARYING NUCLEATION

The establishment of a steady-state regime of
nucleation was first considered by Zel'dovich, !
who obtained an estimate of the characteristic time
= (g — £1)7/4D(g,). Here g.is the number of
molecules in a critical nucleus, and g, is the size
at which a steady distribution is established Min-
stantaneously." Subsequently, numerous attempts
were made to refine these estimates and to deter-
mine the analytical dependence I{t)} (see the reviews
in Refs. 4, 5, 11, 12 and also Refs. 2, 3, 13, and
14}, The great diversity of the results obtained
in studies of the same equation (1) is due mainly
to the following reasons. :

In general, Eq. (1) does not have a closed
analytical solution, and the difference in the results
is due to the particular approximations that were
used, in particular, the methods used to separate
the "diffusion" region from the "drift" region in
the initial equation or the parabolic approximation
of the barrier W{g)/kT, which is used in many stud-
ies (e.g., Refs. 2, 3, and 15). When in Ref. 18,
for example, the diffusion region was extended to
cover all the subcritical sizes, the result was a
substantial overestimation of the transient period.

In the case of a parabolic approximation of the
barrier and on the assumption that the value D,
of the diffusion coefficient does not depend on the
size, Eq. (1) reduces to the Ornstein—Uhlenbeck
eqguation, which admits an exact solution (e.g.,
Refs. 17 and 18). In this case we have
2w
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where 1 is the maximum relaxation time: the re-
ciprocal of the first nonzero eigenvalue of the
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differential operator,

In a previous paper !? we demonstrated that
this result also holds for arbitrary functions W(g)
and D(g), provided that the barrier W,/KT is high.

" It should be borne in mind, however, that the re-

laxation is preceded by a fairly prolonged "incuba-
tion period," during which the flux is virtually

zero. We note that the first eigenfunction of the.:
operator indicated above has a zero derivative at . R
g = g,, so that the establishment of the-flux j,(t) .
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FIG. 1. 1, 2) Comparison of Egs. (4) and (14) with the numerical
solution of Eg. (1): x ={t = tde't + K WEkJKT = 20 (1), 30
(I1). :
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is characterized by the second eigenvalue and the
relaxation time 1, = /2 (Ref. 18).

The ‘transient period depends on the size g.

“Most studies involved theestimate of g = g,. These

estimates generally insufficient since the distribu-
tion of nuclei near g,, because of their slow growth,
is distorted considerably by diffusion in the transi-
tion to the region of large sizes. For such sizes
j(t) does not correspond to the function j,(t) which
is displaced in time. The transient process in the
above-critical region was considered in Refs. 3, 14,
and 20, but the guesiton of what size g, can be
assigned initially to a nascent nucleus remained
unanswered. This led, in particular, to an am-
biguous interpretation of the results of numerical
simulations.® '

Among the analy‘tical.results for I(t), we éan
‘single out the simple "relaxation" relation

() =Tst {1 ~—gkp .’i}i.} ()
and "diffusion" relation.

I(t) ==Isy exp (——;—I (3"

of the types given in Refs. 4, 5, and 12.
Relations of the form (3) are unquestionably

- valid for along times but become meaningless for

times comparable to the "incubation time" t;. The
applicability of (3') is limited to short times, as
is evident from the fact that at t > t' the linear

“dependence n = Ig; (tw constant) of the total

number of nuclel on time does not follow from (3').

"in Ref. 15,. which has been used often in the interp-

retation of real experiments’ and numerical simula-
tions, 5»° the function I(t) is represented by a
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series which corresponds to (3) and (3'") for long

-and short times; the relaxation time in Ref. 15 is

1K = 8 ¥~ 21, The solution‘in Ref. 15, based on
broad assumptions, is an approximation; this solu-
tion is discussed in Sec. 2.

The most natural approach to the study of non-
stationary nucleation is provided by the solution of
Eq. (1) on the assumption of & high barrier, W,/
ET > 1. This is one of the fundamental conditions
in nuclestion theory (it is closely linked with the
condition g, > 1, which determines the Fokker—
Planck form of the initial kinetic equation, allows

. a steady-state solution to be obtained in closed

form, etc.) and is satisfied satisfactorily in typical
experimental situations. The first asymptotically
rigorous analysis of the establishment of a steady-
state regime of nucleation was carried out by Wake-
shima.?' His analysis, however, contained an ad-
ditional assumption that the flux varies smoothly
in comparison with the function N(g), but this as-
sumption proved to be incorrect. The result was
an underevaluation of the relaxation time, Ty =
t/4, and an analytical form ofi(t), which is different
from (3), could not be determined.

The asymptotically exact analysis of Eq. (1),
earried out in Ref. 19, enabled us to unambiguousty
singie out the diffusion and drift regions in the
initial kinetic equation and to obtain the analytical
relation

{8 t) = Tge oxp {—exp(—a)), z=1"0L] (4)

. The initial nucleus size g, can be chosen in
the interval & « g, — Zx < g The flux j(g,,
t) is carried by drift into the region of large sizes
g, where the analytical form of iis dependence on
time -is preserved with allowance for the lag

g

E(g) =tilg) + A8 g (6, Je) = [, (5)

i.e., the flux j(g., t) determines the nucleation rate

I(t).

To calculate the incubation time tj(g), we use
the result !?

LES

:i(gﬂ)=¢{1n2g_*‘*’.§:ﬂ—c}_, C={ dg(z—r) (8

e
u

Taking in (5) and (8) the limit g, = g,, we
find

t5(8)=~(1n 2 _2c)+§%, (N
u

where the integral is evaluated in the sense of the
principal value. As expected, the final results

do not comtain the "initial size" of the nucleus,
which can be chosen arbitrarily. The last ex-
pression can be rewritten more clearly by introduc-
ing, in addition to the growth time t', the positive
decay time of a nucleus with g < g4,

14

= { 2. o - (8

o -

Taking into account the asymptotic smallness .
of the ratio. A/g,, we find from (8) and (7)
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(9)
Expression (9) is more convenient than ('{)
for specific calculations (see below) when the in-

tegral [dg/g is expressed in terms of elementary

functions.

To determine tj(g) explicitly, it is necessary
to make the expression for themacroscopic growth
rate more specific. In many physical situations
the rate of change of the radius R of the nucleus
is described by an equation of the type

- R_rR, & 3*
h=2(F) (1 —%)s
where the exponent ¥is determined by the manner

in which the material is introduced to the nucleus
(Ref. 22).9

A more general expression is obtained when
allowance is made for the discrete nature of the
molecules in a nucleus (but the macroscopic expres-
sion for the work required to form the nucleus is
retained). In this case the factor 1 — R,/R in
Eq. (10) is replaced by a™{1 — exp [~a(l — R{R)11,
where a = &u/kT, and Sy is the difference in the
chemical potentials of the metastable and stable
phases. The discreteness reduces the decay time
t" and increases the growth time t'. It can be
expected that for reasonably large values of R the
relative role of the discreteness is small even in
those cases in which the parameter a is of the order
of unity. This assumption is confirmed indirectly
by the results of Ref. 19 and by numerical simula-
tions (see the discussion below).

(10)

To determine the incubation time tj(R), let us
consider several of the most frequently encountered
integer values of ¥in the growth law (10); the
general results are given in the Appendix.

Case ¥ = 1 applies when the material is in-

troduced to the nucleus by diffusion. From (9)
we find

1 L/ R 2 R

T taB)=g(F—1] + 2(3—,—“) (11)

3 R
—?—f—ln(ﬁ,* — 1)+,

For % = 0, which corresponds to free-molecular
{"ballistic") delivery of material to the nucleus, we
obtain

L - B R 6w,
-'iu(R)‘_'“E;__Z—{—IU(ﬁE“———-l)-l-ln T - (12)
The situation % = —1 arises if the increase

in the nucleus size is not limited because of the
introduction of the material, in the case of cavita-
tion. 2% In this case we have

%ti(ﬂ)—;ln(w:;—'l)—{—lnﬁgi, (13)

In typical situations we have 6W, /KT > 102
and the constant ln 6W,/kT in (11)-(13), which is
asymptotic, is indeed large. It can be said, with
sufficient accuracy, that besides In 6W,/kT the
expressions for 17! t; (r) contain only terms that
increase without bound as R + «, which allows the
incubation time to be found approximately in those
cases in which the corresponding integrals cannot
be evaluated elxplicitly (see Appendix),
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The 'experimentally observable quantity usually
is not the nucleation rate I itself but the tofal num-
3
ber of nuclei, n{t)= K I{ydr . Integrating (4),

we find
Rty =l g E, (e77), (14)

where E,{z)} is an exponential integral function. ?¥
At long times, (14) has the asymptotic form

n(e) = o t— Einds tinq:"*?%: f 1t
(y = 0.577... is Euler's constant), which enables

us to relate the incubation time t; to the experi-
mentally determined "induction" time tj;g4.

(15)

To illustrate the accuracy of these analytical
relations, we numerically solved Eq. (1) in the
region of sizes 8 < g . < 96 for two values of the
barrier W,./kT = 20 (g, = 22.2) and_W,/kt = 30
{gs = 45.9). Virtually no data on R{R)are available
for crystallites in glasses [although the experi-
mentally observed slight effect of the size on the
growth rate when R » R, does permit the assump-
tion that this relation iz similar te .Eq. (10) with
% = 0]. Because of this circumstance, we chose
the physical parameters corresponding to a super-
cooled gas, where law governing the growth of a
nucleus has the form (10), which was modified to
allow for the discreteness at 9 = 0 (the scheme of
the numerical simulation is similar to that described
in Ref. 26). The specific form of R(R) for a given
D(gy) can affect only the induction time tjng, which
therefore is a more convenient, experimentally me-
asurable quantity. The use of Eq. (12) in this case
gave a correct result for tjnq within 10%, although
the "discreteness parameter" a = §u/kT was not
small: 1.8 for W, /KT = 20 and 1.3 for W,/KT =
30.

The results of the calculations are shown in
Fig. 1 (I, II). The solid lines represent the
theoretical relations; straight line 1 corresponds
to taking the logarithm of (4) twice and curve 2

FIG. 4
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- with (14).
" virtually coincide everywhere, except at the small

4

. pepresents the function E, {exp(-X) }, consistent
The numerical and analytical results

.‘initial stage where asymptotic methods are inappli-
__cable because of the large gradients of the dis-
tribution function, and the dependence of the nuclea-
tion rate on time is evidently closer to (3').

‘9. COMPARISON WITH EXPERIMENTAL DATA

In accordance with the results of the preceding
Section, we suggest a possible scheme for comparing
the theory with experimental data on the functional
dependence n(t).

_ 1) Isolating the linear part of n(t), we deter-
mine Ig¢ and tjpg in accordance with (13).

2} -We find n(tjpg) and determine, in accordance
with (14), that

=l e By (€M) F o 20 (G (16)

3) In accordance with (14), we plot niheor(t).

In one of Jhe first studies of time-varying
nueleation in glass® the function I(t) was deter- -
mined from n(t).  Calculating t from the fore-
going scheme, we plot I(t) in accordance with

S (4) (Fig. 2)... Allowing for the small scale of the
graphs in Ref. 6, which gives us a reasonably
good accuracy in determining t, we consider the
agreement between the theoretical and experimental
results to be satisfactory. The condition

1 (tind = Ist exp (—exp (—7)) =~ 0.57k¢ ,

.which is also satisfied reasonably well, does not
depend on the choice of 1.

The results of the comparison of the theory
with the experimental data’ are shown in Fig. 3,
where the times for various groups of experiments
were reduced to one single scale by means of a
multiplier which, in the opinion of authorx
coincides with 1g. The possible spread of the
theoretical results because of the limited accuracy
in the determination of n(tj,q) is also shown; it
was assumed that the asymptotic dependence n(t),
and hence Igt and tijpg, were determined accurately.
Satisfactory agreement is observed between the
.theory and experiment everywhere, except in the
small initial stage where the experimental points
Lie slightly lewer. hi.?iuyz_,

The approximate solution of Kashchiev, !* which
was used in Ref. 7 and which can be written as
I(t) = Igt 8, [0, exp(—t/ tg)] (8, is an eliptical
theta function ?%), has a number of drawbacks
because to the absence of an auxiliary time param-
eter, in addition to the relaxation time . The
Iatterf&e%er in this case turns out to be closely linked
with the induction time tiyg = ( #?/6)tg, which

£

depends on the conditions of the experiment (minimum

observable size). In accordance with Ref. 13, we
have :

U™ % " o 0.39L 75

ol Tue
According to (16), this valuMs‘{nore than 50%

_higher than the relaxation time T, which is calculated
from the experimental values of n(tjng) and Igi.

n(tynd =2 7x 2

m=l

The establishment of a steady-state nuclea-
. tion regime in glasses of various compositions was
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- functions of time.

studied comprehensively by Fokin et al. * We have
chosen thégr study because the linear portion of
n(t) given in it has the largest number of points.
As follows from the graph of the furction E(e™X)
in Fig. 1, the points with t — tjpg > 2 7 [or, ac-
cording to (18), with t — tjnq > 4n(tipd)Ilst” ']
must be used to determine the asymptotic form of
n{t) with sufficient relinbility. The results of the
comparison are shown in Fig. 4. Satisfactory
agreement is observed everywhere, except in the small
initial stage. '

The experimental results’»® are higher than the
theoretical values in ‘the initial stage apparently
because of either the presence of finite-sized nuclei
in the initial state, which was studied in Ref. .27,
or the existence of additional relaxation processes,
which would lead to a time dependence of the bar- -
rier W,/kT. The latier was considered theoretically
in Ref. 19, but a comparison seems premature be-
cauge of the large relative error in measurements
in the region of extremely low nucleation rate. Of
the other possible causes of this divergence, in
addition to heterogeneity, we point out the multi-
parameter nature of the nucleation process. In -
this case, according to Ref. 24, at short times
the formation of nuclei may proceed predominanily
along energetically less advaritageous trajectories
but with a shorter transient period. :

- CONCLUSION

1. Relations have been derived for determin-
ing the nucleation induction time from the macro-
scopic equations for nucleus growth.

9. The nucleation rate and the number of
nuclei formed have been determined-as analytical
These functions are nearly exact
in the range of applicability of the initial kinetic
equation.

3. The results which we have obtained are
in satisfactory agreement with known experimental
data (with the exception of the relatively small
initial stage of nucleation). There results can be .
used to determine the relaxation time and the dif-
fusion coefficient D(g).

I wish to express my profound thanks to I.
‘M. Fishman,.  whose comments stimulated the execu-
tion of this study. '

APPENDIX

INCUBATION TIME WITH AN ARBITRARY

NUCLEUS GROWTH LAW

~ Let us first consider the case of an arbitrary
% in the growth law (10).  We rewrite Eq. (7) in
the form

i
L 2R3 1 dR
—ti(Ry=In 25 = 2( —_t—_,
7|t1( ) In 3 Cﬁ + 15 o

B (A1)
,AR=A‘;—§‘, Cr=C+In3.
We have
[ Ty [81+1
17 4R et N :
_5 _R_sog du(u_i-{—ﬂélu” ) (A.2)

éx

where {9} is the fractional part of &, and [9] is
its integer part.

Taking the infinite Hmit in the converging
part of the integral (A.2), we find?®.
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R (311 be taken into account through extremely crude

1¢ dF in
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g in the experiments under consideration), it is R

On the basis of (§) and (0) we represent desirable to use relations of the type (11)-(13)
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state). The discrete nature of the molecules can Translated by Eugene Lepa
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