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A typical nucleation-growth process is considered: a system is quenched into a supersaturated state
with a small critical radius r�

− and is allowed to nucleate during a finite time interval tn, after which
the supersaturation is abruptly reduced to a fixed value with a larger critical radius r�

+. The
size-distribution of nucleated particles f�r , t� further evolves due to their deterministic growth and
decay for r larger or smaller than r�

+, respectively. A general analytic expressions for f�r , t� is
obtained, and it is shown that after a large growth time t this distribution approaches an asymptotic
shape determined by two dimensionless parameters, � related to tn, and �=r�

+ /r�
−. This shape is

strongly asymmetric with an exponential and double-exponential cutoffs at small and large sizes,
respectively, and with a broad near-flat top in case of a long pulse. Conversely, for a short pulse the
distribution acquires a distinct maximum at r=rmax�t� and approaches a universal shape exp��
−e��, with ��r−rmax, independent of the pulse duration. General asymptotic predictions are
examined in terms of Zeldovich–Frenkel nucleation model where the entire transient behavior can
be described in terms of the Lambert W function. Modifications for the Turnbull–Fisher model are
also considered, and analytics is compared with exact numerics. Results are expected to have direct
implementations in analysis of two-step annealing crystallization experiments, although other
applications might be anticipated due to universality of the nucleation pulse technique. © 2009
American Institute of Physics. �doi:10.1063/1.3254322�

I. INTRODUCTION

“Nucleation pulse,” also known as two-step annealing in
crystallization context1–3 is a standard experimental tech-
nique to study intense nucleation in systems of diverse physi-
cal nature. During the first stage a system is quenched deeply
into a metastable state, which is maintained during a “nucle-
ation time” tn, resulting in nucleation of a large number of
particles in a relatively broad range of small sizes, typically
of the order of nanometers or less. In exceptional situations
�“single-step annealing” with long tn� distribution of the larg-
est particles can be observed directly,4,5 but generally a sec-
ond, growth stage of length t is required to bring particles to
detectable sizes. Between the two stages the external control
parameter, such as temperature1–3 is abruptly changed, reduc-
ing the supersaturation and terminating nucleation. During
the subsequent growth stage the change in sizes is enormous,
up to three order of magnitude and more, and the challenge
to a theoretical description is to extract the valuable, “micro-
scopic” nucleation information from the observed distribu-
tions of large particles or, equivalently, to be able to predict
those distributions once the nucleation part is assumed to be
known.

In the past, the main focus of most of the related
numerical6–8 and analytical9,10 studies was the total number
of particles N, rather than the entire distribution f�r , t�.
Partly, this was due to the relative simplicity of the associ-
ated mathematical problem when only the solution of the

nucleation equation was required to find N. The growth stage
then supplied a single parameter r�

+, the corresponding criti-
cal size, to this solution without otherwise changing its
structure––see Sec. II D below, while the values of the
growth time had no effect. Partly, the exclusive interest in N
was determined by the early crystallization experiments,
where painstaking visual counting of hundreds of nuclei
made it unrealistic to extract more detailed information about
the distribution. However, advances in confocal microscopy
combined with digital image processing11 can provide more
detailed information about the size distribution of microcrys-
tals of the types observed in optical studies,1,2 as well as in
TEM,3 which makes the theoretical evaluation of f�r , t� a
pertinent task.12 Universality of the nucleation pulse tech-
nique allows to anticipate other applications, for example in
vapor condensation where comparative numerical investiga-
tions of the pulse have been performed recently,13,14 and
where refined experimental data are available.15

The goal of the present paper is to describe analytically
the time evolution of the distribution, with a special focus on
the asymptotic behavior at large t. Although some general
results, valid for any classical-type nucleation and growth
will be presented, the major attention will be on the two
mainstream models of interface-limited nucleation and
growth. Those are the continuous Zeldovich–Frenkel
�ZF�16,17 and the discrete Turnbull–Fisher �TF� �Ref. 18�
nucleation models. �Another discrete model, due to Becker
and Döring19,20 is expected to exhibit a qualitatively similar
behavior, as described in the Appendix B.� The study ex-
pandsa�Electronic mail: vitaly@oak.njit.edu.
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the one in a brief letter,12 which also considers the diffusion-
limited case.

Similarly to standard experimental assumptions, it is ex-
pected that interactions between nuclei are still negligible
through the entire growth stage despite a significant increase
in size. Those interaction can enter either via direct impinge-
ment of nuclei, as in the Kolmogorov–Avrami picture,21,22 or,
indirectly, via depletion of the matrix and continuous in-
crease with time of r�

+, as in the Lifshits–Slyozov–Wagner
scenario.23,24 This limits the total amount of the new phase,
and thus the growth time t when the obtained solution can be
used. Corresponding estimations are given in Sec. VI, and
for the time scales considered restrictions on t are asymptoti-
cally weak provided the nucleation barriers are sufficiently
large.

The present paper has the following structure. In Sec. II
the system of notations is explained and the standard general
relations between nucleation and growth are described, with
an emphasis on the deterministic rate ṙ, which plays the cen-
tral role in the forthcoming analysis. Specifications are made
for the ZF model, and the transient nucleation distribution,
which serves as initial condition for subsequent growth, is
also presented.

In Sec. III evolution of the distribution f�r , t� during
growth is considered, with general results being conveniently
expressed in terms of a “nascent size” r0�r , t�, the size which
will reach the observable size r after a growth time t. For t
→� the nascent size becomes a function of a single param-
eter, indicating the emergence of an asymptotic shape.

In Sec. IV results are specified for the ZF model where
r0�r , t� can be expressed explicitly through a special function.
This allows a better understanding of the general asymptotic
limits, but also clarifies the early time behavior when the
growth and the decay regions start separating from each
other with the most dramatic changes in the shape of the
distribution. In particular, an interesting disappearance of the
“nucleation singularity” at the smallest size is described.

In Sec. V modification of the asymptotic results for the
TF model is discussed, and comparison with exact numerics
for this model is presented. Section VI gives a qualitative
description of the analytical results, as well as estimations of
the domain of their applicability.

II. BACKGROUND

A. Notations for nucleation and growth stages

For clarity, parameters specifically related to the growth
and the nucleation stages will be distinguished by super-
scripts + and � respectively; such superscripts, however,
will be avoided in general definitions valid for both stages or
when no confusion can occur, in expressions which are dis-
cussed exclusively for a single stage. The key functions
which then determine the solution are ṙ�, the deterministic
growth rates for both stages, and the size-dependent flux j
established by the end of the nucleation stage. Characteristic
time scales �� are defined from corresponding growth rates,
Eq. �7�, and in specific examples the growth time t will be
scaled by �+.

The dimensionless ratio of the critical radii

� � r�
+/r�

− 	 1,

will determine the relative depth of the nucleation quench,
and for simplicity of notations the radii of nuclei r are as-
sumed to to be scaled with r�

+ �i.e., the latter can be taken as
1�. The other dimensionless control parameter �, related to
the duration of the nucleation pulse tn, corresponds to the
length of the tail of the distribution at the end of the nucle-
ation stage, as in Fig. 1. For a short pulse with tn less than a
few �−, when the nucleation distribution has no tail, an alter-
native to �possibly negative� � will be used in the form of a
dimensionless X, defined in Eq. �10� and related to � either
by the general Eq. �32� or by Eq. �19� for the mainstream
nucleation model considered in specific examples.

The time t is counted from the instant when nucleation
was terminated. When a discontinuity t=0 is important, the
nucleation and the growth stages will be distinguished by t
=0− and t=0+, respectively.

B. Distribution and fluxes

Evolution of the distribution during growth is described
by a continuity equation

� f

�t
+

� j

�r
= 0, �1�

with a drift approximation for the flux

j � ṙ f . �2�

Here ṙ�r� is the deterministic growth rate, which depends on
the mass exchange mechanism between the nucleus and the
metastable phase or, in other words, depends on the specific
nucleation model under consideration. A general feature is
the change in sign of ṙ�r� at the critical size r�, reflecting the
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FIG. 1. Scaled distributions f�r ,0� /�−jst formed by the end of the nucleation
pulse �initial conditions for growth�, and explanation of notations. Lines—
Eqs. �8� and �12� specified for the ZF model with 
� /kT�37 for two
different durations of the pulse tn, and with �=1.3. Left curve: tn /�−�10,
right curve: tn /�−�20; symbols—numerics. The small-r part is insensitive
to tn, which affects only the length of the tail �the initial location of the front,
r0

f , shown for the longer pulse�. Particles with r	r�
+ will grow to large sizes;

the corresponding area under the curve, the scaled number of nuclei N /�−jst,
is given by Eq. �10� and will be conserved upon further transformations. In
the deterministic approximation the distribution has a singularity at r=r�

−

which disappears after a short time td during the growth stage �Sec. IV A�.
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decay of sub- and growth of supercritical particles, respec-
tively.

In order to account for nucleation, a diffusive component
should be added to the flux

j = − �
� f

�r
+ ṙ f , �3�

which makes Eq. �1� a Fokker–Planck type equation. Ac-
cording to Zeldovich16 the “diffusion coefficient” in the
r-space is related to deterministic rate by an analog of Ein-
stein relation

� = − kT
ṙ

d
/dr
, �4�

where 
�r� is the minimal work required to form a nucleus
with a maximum 
�r���
� corresponding to the nucleation
barrier. In the standard �“classical”� nucleation theory one
has the Gibbs expressions


�r� = 
��3	 r

r�


2

− 2	 r

r�


3�, 
� =
4�

3
r�

2, �5�

with  being the interfacial tension.
Assuming an inhomogeneous boundary condition

f�rmin�=const �exp�−
�rmin� /kT� at some small rmin�r�,
and an absorbing boundary in the growth region, one obtains
the asymptotic expression for the steady-state flux in the
limit 
��kT

jst �
1

�
exp	−


�

kT

 , �6�

�which is remarkably insensitive to the precise location of
those boundaries, provided they are far enough from r��. The
full pre-exponential was also evaluated in Ref. 16, although
will not be required here as long as jst is assumed to be
known. The time scale �, however, will be important. It is
defined as16

� = 	dṙ

dr


r=r�


−1

, �7�

and should be specified, respectively, for the nucleation and
for the growth stages. �On the other hand, the flux jst with
�=�− is evaluated only at the nucleation stage, and its value
is assumed to be negligible for growth—see Sec. VI.�

C. Discrete nucleation models

An alternative to the Fokker–Planck type nucleation
equation is the discrete, “Becker–Döring” �BD� equation,20

written in the space of the number of monomers n in a
nucleus—see Sec. V below. Selection of the discrete diffu-
sivity �n then specifies a model within the general scheme,
with �n�n2/3 corresponding to the original BD choice, and
an alternative being the TF selection, as described in Sec. V.

If � follows the definition given by Eq. �7� and the nucle-
ation barrier is large, the above asymptotic expression for jst

remains accurate, except possibly for very small values of
the critical cluster number n�.25 However, the general con-
nection between diffusivity and deterministic rate is different

from Eq. �4� in the discrete case.26,27 For the standard BD
and TF models those rates are well known—see Appendix B
and Sec. V, respectively.

Generally speaking, the time-dependent solutions of the
discrete and continuous equations can differ significantly. In
particular, at very small times t�� a solution to the BD
equation, which has no analog in the Fokker–Planck case,
can be constructed.28 This difference, however, is mostly of
academic interest since at such small times the nucleation
flux is virtually zero. For larger times t�� considered in the
present work, modifications associated with switching be-
tween the discrete and continuous models are quite modest,
and are solely due to the difference in the corresponding
deterministic rates. Once corrections for those are intro-
duced, the above Eqs. �1� and �2�, as well as the general
expressions for transient nucleation described below, can be
used.

D. Transient nucleation and initial distribution for
growth

Transient nucleation was described earlier9,26 from the
matched asymptotic �singular perturbation� solution of the
BD equation in the same limit 
��kT. In present notations,
the flux at the end of the nucleation stage is given by

j�r,0−� = jst exp�− e−x�, x � �tn − ti��r��/�−, �8�

with the “incubation time” ti at a given size r	r�
− related to

the deterministic growth/decay rate ṙ�r� by a general expres-
sion

ti�r� = P�
0

r dr

ṙ− + �−	ln
6
�

kT
− 2C
 ,

�9�

C = �
0

r�
−

dr	 1

�−ṙ− −
1

r − r�
−
 .

Here P indicates the principal value of the integral and the
constant C determines the nonlinear part of decay;9 for the
specific models considered explicit elementary expressions
for ti�r� are available and will be discussed later in the paper.

Particles with size exceeding the new critical size r�
+ will

grow to large sizes and will be counted as “nucleated.” Their
number is given by the integral of Eq. �8�;9 in present nota-
tions

N�tn� = �−jstE1�e−X�, X =
tn − ti���

�− , �10�

where E1 is the standard first exponential integral.29 For tn

→� �large X� one has E1�e−X��X−�, with �=0.5772. . . be-
ing the Euler constant, and the dependence on nucleation
time becomes linear

N�tn� � jst�tn − tlag�, tlag = ti��� + ��−. �11�

In the above, tlag is the time lag �also “induction time”�,
which is a direct experimental manifestation of transient
nucleation.1,2

Once the flux is known, the distribution in the drift ap-
proximation is given by
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f�r,0� = j�r,0−�/ṙ−. �12�

The latter is valid for

r − r�
− � �r � r�

−�
�/kT�−1/2, �13�

with a small �r indicating the width of the boundary layer
near r�

−.
A representative distribution for interface-limited growth

is shown in Fig. 1. For a sufficiently long nucleation pulse
the distribution acquires a tail of length �, with a sharp cutoff
�“front”� at r0

f ��+1, defined as the root of an equation

ti��r0
f � = tn. �14�

The parameter x in Eq. �8� is then given by

x = �
r

�+1

dr/�−ṙ−. �15�

For an exceptionally long pulse the tail approaches a con-
stant jst / ṙ�

−, with ṙ�
− � limr→� ṙ−�r� being the growth rate in

neglect of curvature effects.

E. Growth and transient nucleation in the Zeldovich–
Frenkel model

The ZF model is usually associated with the continuous
description given by Eqs. �1� and �3�, with ṙ specified for
interface-limited growth at small supersaturations

ṙ =
r�

�
�1 − r�/r� . �16�

Together with Eqs. �4� and �5� this leads to diffusivity ��r�
=r�

2�−1�6
� /kT�−1�r /r��−2 in the Fokker–Planck equation.
Note that the dimensionless ��r� /r�

2 is small for r�r�, which
determines the asymptotic accuracy of nucleation results de-
scribed above. In addition, ��r� /r�

2 becomes exceptionally
small for a large r�r�, leading to a negligible diffusion cor-
rection to the flux. Thus, if initial conditions for growth are
accurately determined—see Fig. 1—one expects that further
drift evolution, which is practically exact, will preserve the
accuracy. �For which reason, further comparison with numer-
ics for the ZF model will not be presented in this work; see,
however, Ref. 12.�

With the adopted notations, the deterministic rate is
specified for the growth and the nucleation stages

ṙ+ =
1

�+	1 −
1

r

, ṙ− =

1

��−	1 −
1

�r

 . �17�

The above relations will play a key role in the forthcoming
discussion. The incubation time is given by9

1

�− ti��r� = ln
6
�

kT
− 2 + �r + ln��r − 1� , �18�

which gives

X =
tn

�− − ln
6
�

e2kT
− � − ln�� − 1� = �� + ln	 ��

� − 1
+ 1
 ,

�19�

and

x�r� = X + ��1 − r� + ln
� − 1

�r − 1
� X . �20�

In the above it is assumed that the lower boundary of the
Fokker–Planck equation is placed at a negligibly small size
rmin�r�

−. If, for some reason this size is non-negligible, the
incubation time must be reduced by the �positive� decay time
from rmin to 0, which is −�−�ln�1−rmin /r�

−�+rmin /r�
−�. When

discussing the ZF model it is reasonable to avoid an extra
parameter by ignoring the insignificant nonzero location of
the boundary, typically placed at a few molecular sizes
�while the critical size must be much larger in order to justify
the model�. It might be more important to account for rmin in
discrete models �Sec. V� where the critical cluster number
can be relatively small.

III. GENERAL

A. Arbitrary times

Since for any t	0 the growth rate has no explicit time-
dependence, the flux remains constant along the growth path,
i.e.,

j�r,t� = j�r0,0+� , �21�

with the initial �“nascent”� size r0�r , t� determined by the
growth integral

�
r0

r dr

ṙ+ = t . �22�

The distribution then can be determined from

f�r,t� = j�r0,0+�/ṙ+. �23�

On the other hand, the distribution �not the flux!� is con-
tinuous across t=0, i.e., f�r ,0+�= f�r ,0−�. The latter can be
related to nucleation flux by the drift approximation, Eq.
�12�, and this allows one to exclude the initial “growth” flux
j�r0 ,0+�. One thus obtains

f�r,t� = j�r0,0−�
ṙ0

+

ṙ0
−ṙ+ . �24�

Together with Eq. �8� for the nucleation flux j�r0 ,0−�, the
above result provides the full formal solution of the problem.
In practice, one still needs to supply r0�r , t� from Eq. �22�,
which can be rather involved depending on the explicit ex-
pression for the growth rate for a selected model. At the
moment, note that for any model r0�r ,0�=r, which gives the
earlier f�r ,0�= j�r ,0−� / ṙ−.

Near the critical size r�
+=1 the growth rate is approxi-

mated as ṙ+�r���r−1� /�+, and Eq. �22� gives

r − 1 � �r0 − 1�exp�t/�+� .

Thus, there is no singularity in the ratio ṙ0
+ / ṙ+ in Eq. �24� and

the distribution decreases exponentially with time
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f�1,t� = �−jst� exp�− e−X�exp�− t/�+�, � �  1

�−ṙ−
r=1

,

�25�

where X is related to nucleation parameters in Eq. �10�. As a
result, although the initial distribution is monotonic �Fig. 1�,
a maximum will be developed in the region of large sizes r
	1.

The general Eq. �24� is applicable both in the growth and
the decay regions of sizes. Since the sign of r0−1 is the same
as of r−1, the ratio ṙ0

+ / ṙ+ is always positive and so is the
distribution. On the other hand, the solution is valid only for
particles which were already growing during the nucleation
stage, i.e., ṙ0

−	0 with r0	1 /�, with a singularity at the
“old” critical size 1 /�. Restrictions on the physical size r,
however, become weaker with time and after a finite decay
time td=−�0

1/�dr / ṙ+ the solution is applicable for any posi-
tive r. The singularity in the distribution drifts toward small
sizes and disappears after the same decay time td. For larger
t one expects f�0, t�=0, as will be described later in the pa-
per.

B. t\�

After a sufficiently long growth time, the shape of a
distribution is not expected to change anymore. To describe
this effect, one needs to view this shape from a reference
frame moving together with some representative particle,
corresponding, say to the cutoff of the distribution or to its
maximum.

Consider first a distribution with a well-developed initial
front at r0

f , as in Fig. 1. The position of the front rf�t� will
evolve in accord with Eq. �22� with the lower and upper
integration limits replaced, respectively, by r0

f and rf�t�. This
allows one to eliminate time, and with the aforementioned
notation �=r0

f −1 one can write

�
r0

�+1 dr

ṙ+ + �
rf�t�

r dr

ṙ+ = 0. �26�

The second integral can be simplified for t→� since typical
r concentrate near rf�t�. Introducing a dimensionless

� =
r − rf�t�
�+ṙ�

+�t�
, �27�

with ṙ�
+ being the growth rate of a large particle �“interface

rate”�, one thus has

�
r0

�+1 dr

ṙ+ � − ��+. �28�

This is again an equation for r0 but, unlike Eq. �22� which
has both r and t as independent variables, in the present case
r0 is a function of a single variable �, indicating the emer-
gence of an asymptotic shape.

Treating � as a new variable, and reducing the distribu-
tion by �−jst, one obtains the new dimensionless distribution
in the �-space, F���=F0�r0���� with

F0�r0� =
j�r0,0−�

jst

�+ṙ0
+

�−ṙ0
− . �29�

The above two equations provide a parametric representation
of the solution if r0 is considered as an independent param-
eter. Often, the entire representation requires only elementary
functions—see the ZF example later in the paper.

Unlike the general Eq. �24�, the asymptotic distribution
�29� is defined only for r0�1. Smaller particles will decay
and have no contribution at large time. The fact that � is the
distance from the front did not play any special role so far,
and a similar approach will be used in Sec. III E for distri-
butions which are better characterized by a maximum.

A typical structure of the function F0�r0� is shown in Fig.
2�a� for various durations of the nucleation pulse. Note that
representation of the distribution as a function of �—Fig.
2�b�—requires a mere stretching of F0�r0� in horizontal di-
rection. Thus, that simpler function can be used, e.g., to
evaluate the maximum. The actual structure of the distribu-
tion F���, however, will be better understood after the limits
of a long and a short pulse are considered.

C. Moments of the distribution

Since a characteristic size associated with the distribu-
tion, say rf, increases unboundedly during growth, one has
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FIG. 2. Dimensionless asymptotic distribution in terms of �a� initial size r0

and �b� in terms of �=r−rf�t�, with rf�t� locating the front. For the ZF model
the dependence F0�r0� is elementary, Eqs. �20� and �54�; F��� involves a
special function, Eq. �56�. For all curves �=1.3 and, from left to right for
�a� �from right to left for �b��, �=1,2 ,4 ,8 ,12; for selected nucleation barrier
this would correspond to tn /�− ranging, approximately, between 6 and 23—
see Eq. �19�.

164115-5 Distribution formed in a nucleation pulse J. Chem. Phys. 131, 164115 �2009�

Downloaded 29 Oct 2009 to 128.235.92.53. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



1

�−jst
�

0

�

rkf�r,t�dr = �rf�kM0 + �rf�k−1k · ��+ṙ�
+�1M1 + ¯ .

�30�

Here the dimensionless moments are defined in terms of �

Mk = �
−�

�

�kF���d� = �
−�

X

��x�kexp�− e−x�dx , �31�

The parameter X is given by

X = �
1

�+1 dr

�−ṙ− , �32�

and is equivalent to the one defined in Eq. �10�. For k=0, Eq.
�31� gives the earlier result for the number of nuclei N, the
dimensionless part of Eq. �10�, but otherwise the integral
cannot be evaluated analytically. Certain simplifications are
possible for a long pulse, as will be described below and in
Sec. IV B.

D. Long pulse, �š1

In either variables r0 or �—see, respectively, the curves
with largest � in Figs. 2�a� and 2�b�, the distribution re-
sembles an asymmetric trapezoid with a mild cutoff at small
sizes, and a much sharper, “double-exponential” cutoff at
large sizes due to transient effects at the beginning of nucle-
ation.

Consider first the small-size cutoff with r0 close to 1.
Here the double-exponential factor, the dimensionless flux in
Eq. �29�, is close to 1, and taking the asymptote of the re-
maining part, one obtains

F0�r0� � ��r0 − 1� , �33�

with the constant � defined in Eq. �25�. The growth integral
in Eq. �28� is now nearly divergent, implying �→−� and

r0��� � 1 + �e�+c���, �34�

where

c��� = �
1

�+1

dr	 1

�+ṙ+ −
1

r − 1

 , �35�

describes the nonlinear part of growth. Thus, in terms of �
the small-size cutoff is exponential and is given by

F��� � ��e�+c���. �36�

The large-size cutoff takes place near the front �→0.
Corresponding r0 are close to initial r0

f =�+1, or more accu-
rately

r0��� � 1 + � + ��+ṙ+�r=�+1. �37�

These values should be kept in the rapidly changing double-
exponential, which determines the flux in Eq. �29�. In the
remaining part r0 can be replaced by �+1, leading to a
simple shape of the front

F��� � � exp�− e���, � �  �+ṙ+

�−ṙ−
r=�+1

. �38�

A single interpolation which accounts for both cutoffs can be
constructed, and will be discussed in connection with the ZF
model—see Fig. 3. In between the cutoffs the distribution is
near-flat and saturates at the same value �, which becomes
independent of the pulse duration if the latter is sufficiently
long. For ultra long pulses, with � in the range of hundreds,12

both cutoffs become near-vertical and the distribution ap-
proaches a “box” shape.

For the purpose of evaluation of moments, note that the
major contribution comes from large x with

� � − x
�−ṙ�

−

�+ṙ�
+ ,

and

�
−�

X

�− x�kexp�− e−x�dx = �− 1�kXk+1

k!
+ �k + O�e−X� . �39�

For reference, �0=−� , �1=�2 /2+�2 /12, . . ., etc. Similar
numbers appear when evaluating temporal moments of the
nucleation flux.30 The odd-number moments Mk will be

�20 �15 �10 �5 0
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0.4

0.6

0.8
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1.2

ρ

F (ρ)

�25 �20 �15 �10 �5 0

0.2

0.4

0.6

0.8

1.0

ρ

F (ρ)

(a)

(b)

FIG. 3. Approximations to asymptotic distributions for not too short pulses
for �a� �=1.3 and �b� for �=1.1. Solid lines are the full expression for
different �, as in Fig. 2, with added �=0.1 and �=0.5 �respectively, tn /�−

�4 and 5�. The small-� elementary approximation, Eq. �45�, is shown by
dashed lines. Dotted lines in �a� indicate the large-� approximation, Eq. �60�
�which blends in with the full expression for ��8�.
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negative since the bulk of the distribution is at ��0.

E. Short pulse

Here for all sizes of interest the corresponding nascent
size r0 is close to 1. This gives

F0�r0� = �e−��r0 − 1�e−���r0−1�, �40�

with a constant

� = e−X � 1. �41�

Unlike the long-pulse situation, the distribution has a sharp
maximum at r0

max=1+1 /�� with a value

Fmax � e−�−1/� ,

which is extremely sensitive to the pulse duration. Once r0 is
expressed as a function of r and t, the maximum will be
located at some rmax�t�. A natural variable to describe the
distribution will be the dimensionless distance from this
maximum, �, defined quite similarly to �

� = �
r0
max

r0 dr

�+ṙ+ �
r − rmax�t�

�+ṙ�
+ . �42�

The corresponding distribution

F��� =
e−�

�
exp�� − e�� , �43�

shown in Fig. 4 by a solid line. The shape is asymmetric with

�̄ = − �, �̄2 = �2 +
�2

6
. �44�

The most remarkable feature of this distribution is that its
width is independent the pulse duration, as confirmed by
numerical data �symbols� for the TF model described in
Sec. V �and data for other models are discussed elsewhere12�.

F. Shallow pulse, �\1

In this limit the shape of the distribution becomes espe-
cially simple. One has to show, however, that even for a
small �−1 the increase in the nucleation barrier can be suf-
ficient to terminate nucleation. Indeed, in the Gibbs expres-
sion for 
�, Eq. �5�, the interfacial tension can be assumed a
mild function of a control parameter, such as temperature.
Thus, for a small increase in the critical size, the increase in
the barrier is of the order of 2��−1�
�. Due a large value of

� the increment of the barrier can still be much larger than
kT, sufficient to terminate nucleation.

Using the connection between large negative � and r0 in
the ratio of growth rates in Eq. �29�, and assuming not too
small � for a well-developed front, one obtains

F��� �
��

� + �1 − 1/��exp�− � − c����
exp�− e��� . �45�

In practice, � exceeds 1 by about 30%. Nevertheless, the
elementary approximation, which is valid for all �, can be
useful for applications since it can provide reasonable accu-
racy even beyond its strict domain of validity, as in Fig. 3.

IV. APPLICATION TO ZELDOVICH–FRENKEL
MODEL

With the simple growth rate of the ZF model, Eq. �17�,
the growth integral �dr / ṙ evaluates to a sum of a linear and
a logarithmic terms and can be inverted in terms of the so-
called Lambert W function. The latter function W�z� is de-
fined as the root of an equation

z = WeW,

and can be used �a� to express explicitly r0�r , t�, �b� to deter-
mine r0��� in the asymptotic dependence, and �c� to relate
the initial front position r0

f , which is the root of Eq. �14�, to
nucleation parameters, specifically to the pulse duration tn.
Other expressions are also simplified since the incubation
time ti�r� in Eq. �18� is an elementary function. To compress
notations, the growth time t will be further scaled by �+.

A. Initial transformations of the distribution

With the above definition of the Lambert W function,
the nascent size r0 is given by

r0�r,t� = 1 + W��r − 1�er−t−1� , �46�

where r0�r ,0�=r and r0�1, t�=1, as expected.
The initial position of the front is determined by

r0
f � � + 1 =

1

�
�1 + W�eX+�−1�� − 1��� , �47�

with X related to nucleation parameters by Eq. �19�. The
front further evolves with time in accord with

rf�t� = 1 + W��e�+t� . �48�

Distribution at arbitrary time is given by Eqs. �8� and
�24�. The parameter x in Eq. �8� is now given by elementary
Eq. �20� with r replaced by r0, from Eq. �46�. Explicitly, one
has
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FIG. 4. Emergence of a universal shape, exp�1+�−e�� �solid line� in the
limit of a short pulse. Dashed lines—analytical solutions of the ZF equation
for different pulse durations. In order of decreasing width tn /�−

=15,12.5,10,4 ,3 ,2 ,1 ,0.5,0.25 �the last three curves practically blend with
each other�. Symbols—numerical solutions for the TF model at various
pulse durations: tn=1.5 �circles�, 2 �diamonds�, and 5 �squares�, with the
nucleation time scale �−�2. Maxima of distributions are matched; other
parameters including width, which emerges the same for short pulses, are
not adjusted. In each case parameter � was defined as �r−rmax� / ṙ�, with ṙ�

being the growth rate of a large droplet. Absolute values of the maxima
differ by orders of magnitude, and in units of �−jst are approximated by
9·10−7, 10−5, and 2�10−2 for each of the TF pulses, respectively.
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f�r,t� = �2�−jst
r0 − 1

�r0 − 1

r

r − 1
exp�− exp�− x�r0���,

r0 = r0�r,t� . �49�

Note that zero in the denominator at r=1 is fictitious and is
cancelled with the one in the numerator in view of r0�1, t�
=1. On the other hand, the singularity at r0=1 /� can be real,
reflecting a rapid increase in the distribution toward the
nucleation critical size r�

−=1 /�. Whether this singularity is
observed or not, depends on whether the equation r0�r , t�
=1 /� has a solution with a positive r. The latter limits the
time by td, the decay time for a particle with initial size 1 /�

td = ln
�

� − 1
−

1

�
. �50�

The most intriguing part is the disappearance of the singu-
larity at t= td, as described below.

Consider a small size r�1, and t close to td. In that case
ṙ+�−1 /r and

r0�r,t� �
1

�
+ �� − 1��r2/2 + t − td� . �51�

The distribution at small r is thus approximated by

f�r,t� � �−jst
r

r2/2 + t − td
. �52�

Two distinct situations are possible. For t� td the distribution
is defined only for r	�2�td− t�, and is singular when r ap-
proaches the lower boundary. At t= td the singularity abruptly
disappears, indicating the dissolution of a large number of
small nuclei which did not survive growth. For larger times
t	 td the distribution is defined for all r�0, and linearly
tends to zero for r→0.

B. Transition to asymptotic shape

1. Arbitrary pulse

For the ZF model parameter � defined in Eq. �27� has a
direct meaning of the distance from the front

� = r − rf�t� . �53�

Viewed from a corresponding reference frame, as in Fig. 5,
the distributions indeed quickly approach an asymptotic
shape. The latter is given by

F0�r0� = �2 r0 − 1

�r0 − 1
exp�− exp�− x�r0��� , �54�

with x�r0� defined in Eq. �20� but with r0 being a function of
a single parameter �, which follows from an equation

� = r0 − 1 − � + ln
r0 − 1

�
. �55�

The latter has a solution

r0��� = 1 + W��e�+�� , �56�

with asymptotes 1+�e�+� for �→−� and 1+�+�� / �1+��
for �→0, respectively, in accord with Eq. �37�. The
asymptotic shape is a nontrivial function of two parameters,

� and �, and has a strict zero at the critical size, correspond-
ing to r0=1. There is no subcritical distribution anymore or
singularities since r0�1 cannot be achieved.

Simplifications of the general asymptotic expression are
possible if parameter X is large, implying a separation of the
cutoffs. From Eq. �19� one concludes that X can be large
either when � is close to 1 �“shallow pulse”� and/or when �
is large �“long pulse”�. The resulting approximations are dis-
cussed below.

2. Shallow pulse

For �→1 and not too small �, the cutoffs can be de-
scribed independently. One has

fapp�r,t� � �2�−jst

r0
app − 1

�r0
app − 1

exp�− e��� , �57�

with

r0
app � 1 + �r − 1�er−t−1. �58�

The position of the front is given by the asymptote of Eq.
�48�

rf � t − ln
t

�
+ � + 1, t � 1, �59�

so that �=r−rf is an elementary function of r , t, and so is the
entire approximation given by Eq. �57�. The latter improves
the accuracy of the general Eq. �45� at not too large times.
For t→�, the value of r0

app tends to r0 in Eq. �34� with
c���=�, and approximation �57� becomes identical to Eq.
�45�, illustrated in Fig. 3.

3. Long pulse „�š1…

Once the pulse is not expected to be shallow, an elemen-
tary approximation for r0 cannot be used, and Eq. �56�,
which contains the Lambert W function, should be involved.
Otherwise, the distribution has a similar shape

F��� = �2 r0 − 1

�r0 − 1
exp�− e��� . �60�

This approximation is shown in Fig. 3 and it does provide a
good accuracy for � exceeding several units. Note that the

�12 �10 �8 �6 �4 �2 2

0.5

1.0
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2.0

2.5

3.0

r − rf(t)

f(r, t)

FIG. 5. Scaled distribution at various growth times t, as seen from a refer-
ence frame moving with the front. From top to bottom: t=0,0.8,2 ,4 ,16
�with �=1.3 and �=5, or tn /�−�13, for all curves�. Thick solid line—
asymptotic distribution F���.
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shape of the front at � close to zero is insensitive to the pulse
duration.

For a sufficiently long pulse the bulk of the distribution
F��� will approach a constant value � �which is also the
limit of ���� in the general Eq. �38��. It is convenient to
define the width of the distribution as the large absolute
value of � with F���=� /e, since F�0�-the “front”-has ap-
proximately the same magnitude. At �→−� one can replace
the double-exponential in Eq. �60� by 1, and use r0�1
+� exp��+��. This gives the width

w � � − ln
� − 1

���e − 1�
, �61�

which in the leading approximation is just the length of the
tail of the initial distribution, �, as defined in Fig. 1.

Due to the flatness of the distribution, its maximum is
not well pronounced. Nevertheless the location is found to be

�max � −
1

�
ln

�2�� + 1�2

� − 1
. �62�

This is much smaller than the width, implying a strong asym-
metry, with the maximum shifted from the midpoint toward
the front. The maximum value is given by

F��max� � �	1 −
� − 1

��

 , �63�

which is close to � for ��1.
Moments of the distribution are given by Eq. �31�, which

can be represented by

Mk = �
1

�+1 dr0

�−ṙ0
−�k + �

−�

0

d�
�+ṙ0

+

�−ṙ0
−�k�e−e−x

− 1�

+ �
0

�

d�
�+ṙ0

+

�−ṙ0
−�ke−e−x

. �64�

The first integral can be easily evaluated since ��r0� is an
elementary function, and this integral diverges for �→�.
The second and third integrals give finite contributions, and
are dominated by small x�−��, with �+ṙ0

+ /�−ṙ0
−��. In this

manner one obtains M0=X−�, in accord with Eq. �11�, and

�̄ = M1/M0 � −
�

2
−

1

2�
ln � −

1

2�
ln

�

� − 1
− 1

+ �1 − �/2�/� . �65�

The leading term being half of the width, as expected for a
near-rectangular box. It is worth reminding, however, that
even for � of several tens deviations from the rectangular
shape are appreciable, and the logarithmic corrections are
important.

4. Short pulse

The parameter � in Eq. �43� is given by Eqs. �19� and
�41�. Furthermore, � is now just the distance from the maxi-
mum, r−rmax�t� with

rmax�t� � t − ln t + 1 − ln����, � = �2/�� − 1� . �66�

The variable � also can be used as an argument of the
distribution for longer pulse durations, as in Fig. 4. The uni-
versal shape emerges for a sufficiently short pulse, tn /�−

�1, which corresponds to ��12 for the parameters consid-
ered. � in this case is negative and has a formal meaning
since the initial distribution has no tail.

For large �, with only a tiny fraction of nuclei surviving
the growth, numerical accuracy of the maximum e−��+1� /� is
not expected to be too high since the starting double-
exponential expression is asymptotic, and can approach the
limit of its applicability. Otherwise, comparison with exact
numerics12 reveals that the �-dependent shape is accurate and
is indeed practically independent of the pulse duration, as
long as it remains short.

V. TURNBULL–FISHER MODEL

The discrete analog of Eqs. �1� and �3� is written for the
distribution fn�t�= f�r , t�dr /dn, with n�r3:

dfn/dt = jn − jn+1, jn = �n−1fn−1 − �nfn. �67�

Boundary conditions are taken as f1=1 and fn=0 for n
=nmax+1. Kinetic coefficients �n and �n are linked by de-
tailed balance �n=�n−1 exp��
n−
n−1� /kT�, with the spe-
cific selection �n=n2/3 exp��
n−
n+1� /2kT� corresponding
to a dimensionless version of the TF model6,7,18,31 �while
�n�n2/3 is the standard BD case—see Appendix B�.

Compared with the ZF case, the TF model has a different
deterministic growth rate31

ṙTF�r� =
2r�

a�
sinh�a

2
	1 −

r�

r

� . �68�

Here a=2
� / �n�kT� plays the role of a “discreteness
parameter”32—the continuous ZF description emerges for a
�1. The functional form of Eq. �68� is valid for both the
nucleation and the growth stages, albeit with different a, �,
and r�.

Unlike the ZF model where the growth integral �dr / ṙ
evaluates to an elementary function, the TF counterpart
�dr / ṙTF does not. This makes the latter model analytically
more involved. In particular, the expression for the incuba-
tion time ti

TF�r� is not elementary, and the length of the initial
tail of the distribution, � cannot be related to the nucleation
parameters even through a special function. Next, Eq. �22�or
�28�, which relate the nascent size r0, respectively, to r and t
or to �, in a general case will have to be solved numerically.
All this increases the value of the parametric representation
of the general solution. Otherwise, no essential differences
from the ZF case are expected, and the latter often can serve
as an initial approximation with further corrections obtained
iteratively.

If the two models are matched to have identical r� and �,
one can introduce the dimensionless difference of the inverse
rates33

��r� � �1/��ṙTF��− �1/�1 − 1/r�� , �69�

which should be specified for the nucleation ��� and for the
growth �+� stages, respectively, and which allows to express
the results for the TF model as corrections to elementary ZF
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expressions. In particular, the incubation time is given by

ti
TF�r� = ti�r� + �−�

0

r

�−�r��dr�, �70�

�and for non-negligible lower boundary, which is often the
case,6 zero on the integration limit should be replaced by
rmin /r�, with a similar modification of ti�r� in Eq. �18��. For
moderate values of � the size-dependent part of the correc-
tion is small due to exceptional closeness of ṙ and ṙTF in the
vicinity of r�. The correction in Eq. �70� is then just an
a-dependent constant, approximately �0.25,10 for the param-
eters considered. The initial position of the front is then de-
termined by the same Eq. �47� with XTF�X+0.25.

Similarly, when describing growth one has

� = �
r0

f

r0 dr

�+ṙ+ = r0 − r0
f + ln

r0 − 1

r0
f − 1

− �
r0

f

r0

�+�r��dr�. �71�

Since the integration involves only the supercritical region
with moderate arguments of the sinh-function in ṙTF, the re-
ciprocal of the latter can be expanded in powers of a+ using
the Bernoulli numbers,33 which leads to

�
r0

f

r0

�+�r��dr� �
�a+�2

24
�r0 − r0

f − ln
r0

r0
f �

−
7�a+�4

1920
�1

3
�r0 − r0

f � +
1

r0
f −

1

r0

+
1

6
	 1

r0
2 −

1

�r0
f �2
 + ln

r0
f

r0
� + ¯ �72�

Equations �71� and �72� determine �, and together with the
general Eq. �29� �with ṙ0 replaced by ṙ0

TF� provide a paramet-
ric representation of the asymptotic distribution.

In view of the practical importance, the long pulse ap-
proximation for the asymptotic shape will be given explicitly

F0�r0� � �
a−

a+

sinh�a+/2�1 − 1/r0��
sinh�a−/2�1 − 1/�r0��

�exp�− exp��0�r0 − r0
f ��� , �73�

with

�0 = �a−/�2 sinh�a−/2�� . �74�

Note that the above is an elementary function, which can be
helpful, e.g., when evaluating the maximum, the width, etc.,
similarly to the ZF case.

Results of comparison with exact numerics, which is de-
scribed in Appendix A, are shown in Fig. 6 for several long
pulses. Although accuracy of the analytical expressions is
somewhat less impressive than in the ZF case,12 they cor-
rectly reflect the flat-top structure of the distribution, with the
pulse duration affecting the width but not the maximum or
the shape of the front.

In contrast, for short pulses the length of the pulse dra-
matically affect the maximum, but has a minor effect on the
width, as in Fig. 7. In the extreme limit of an ultra short

pulse with the number of particles N��−jst, the width of the
distribution is not affected by the nucleation conditions, and
it follows the universal curve, as in Fig. 4.

Parameter � in Eq. �27� is related to physical size r by

� =
a+

2 sinh�a+/2�
�r − rf�t�� . �75�

Due to faster growth the physical distribution slightly broad-
ens compared with the ZF case and, unlike the ZF situation
there is no closed analytical expressions for the position of
the front rf at arbitrary time. For t→�

rf =
2 sinh�a/2�

a
t −

a

2
coth

a

2
ln t + O�1�, a = a+. �76�

A similar correction factor appears in the parameter �, which
describes short-pulse distributions

�20 �15 �10 �5 0
Ρ
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0.6

0.8

1.0

F�Ρ�

FIG. 6. Distributions after long nucleation pulses with �from right to left�
tn=20, 30 and 40 for the TF nucleation model. Symbols—exact numerics,
lines—the large-tn approximation, Eq. �73� with r0 replaced by � from Eq.
�71�. Distributions are reduced by �−jst; the proximity of the maxima to 1 is
coincidental. �The full expression, Eq. �29� not shown in this figure, gives a
somewhat better agreement for tn=20, and is virtually indistinguishable at
tn=30 and 40.�

�3 �2 �1 1 2 3
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FIG. 7. Distributions after a nucleation pulse of intermediate durations of
tn=10 �upper� and tn=5 �lower, multiplied by 10�. Symbols—numerics
�similar to Fig. 6�, lines—full asymptotic approximation, Eq. �29�, with r0

replaced by � in accord with Eq. �42�.
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��r� =
a+

2 sinh�a+/2�
�r − rmax�t�� , �77�

and rmax�t� follows a dependence similar to the one in Eq.
�76�. Both the maximum and the front accelerate compared
with the ZF case.

VI. DISCUSSION

For interface-limited nucleation and growth, a monoton-
icly decaying distribution of nuclei �as in Fig. 1� is estab-
lished by the end of the nucleation stage of a pulse. In the
vicinity of the nucleation critical size r�

− this distribution is
characterized by very large, near-singular values, and at
larger sizes by a tail of dimensionless length �. An abrupt
increase in the critical size to r�

+ has no immediate effect on
this distribution, and the point r=r�

+ at first is in no way
remarkable. During subsequent growth, however, the distri-
bution will undergo dramatic changes. First of all, the small-
size “singularity” will vanish after a short decay time td.
Next, the distribution at r=r� will exponentially decay with
time, separating the decay and growth regions of sizes, and
leading to a formation of a maximum in the latter. After a
sufficiently long growth, an asymptotic shape of the distribu-
tion will be established. Typical transformations of the shape
for a pulse of intermediate duration are shown in Fig. 5.

In view of the richness of the above transformation pic-
ture, the general analytical expression for the distribution
f�r , t�, with t being the growth time, looks remarkably com-
pact, as in Eq. �24� �the nucleation time tn determines the
flux j�r ,0−� via Eq. �8��. However, additional effort is re-
quired to evaluate the “nascent size” r0 which will grow to
size r at time t. For the growth rate associated with the ZF
nucleation model, r0�r , t� can be evaluated in terms of a spe-
cial function, known as the Lambert W function, which leads
to a closed formula for the distribution, valid for arbitrary
time. For other models, such as the original discrete model
due to BD or its modification due to TF, r0�r , t� has to be
evaluated numerically. No significant qualitative differences
from the ZF case are expected, but if the nucleation param-
eters for the models are matched, the TF distribution will be
somewhat broader due to faster growth of large particles,
while the small-size singularity will disappear earlier due to
faster decay. In the BD model the decay is still faster, but
growth is slower compared with the ZF case, which should
lead to a somewhat narrower, but again qualitatively similar
distribution.

After a sufficiently long growth the distribution will ap-
proach an asymptotic shape, as in Fig. 5. This shape is char-
acterized by an exponential and double-exponential cutoffs
at small and large sizes, respectively, but otherwise is a non-
trivial function of two dimensionless parameters, � and �
=r�

+ /r�
−. A general parametric representation by Eqs. �28� and

�29� is the most convenient way to visualize the result.
In the extremes of long and short nucleation pulses, re-

spectively, the asymptotic distribution resembles either an
asymmetric trapezoid �e.g., Figures 3 and 6� or an asymmet-
ric bell shape �Figs. 4 and 7�. In such cases the pulse duration
will have no effect on either the maximum of the distribution
�long pulse�, or on its width in case of a short pulse.

For practical applications it could be useful to identify
situations when the entire shape of the distribution is de-
scribed in terms of elementary functions. Those include the
aforementioned short pulse described by Eqs. �42� and �43�,
and a longer but “shallow” pulse with additional requirement
that increase in the critical size is minor, i.e., � is close to
1—see Fig. 3.

A few notes on the possibility to neglect interactions
between nuclei, which was mentioned in the Introduction,
and which limits the time t. If the flux is normalized per
monomer of the matrix �with jst��1 /�−�exp�−
� /kT�� one
expects �t /�+�3n�N�1, with N being the number of nuclei;
this condition will be more relaxed in case of direct impinge-
ment if the new phase is much denser than the metastable
one. For large 
��kT and, especially for a short pulse with
N��−jst, the restrictions on t are extremely weak, and there
will be plenty of time for the establishment of the described
asymptotic shapes, which require a mere nonexponential
t /�+�1. More stringent conditions are necessary when con-
sidering the maximum time t, which can be encountered in an
experiment. The upper bound for the ratio t /�+ can be esti-
mated as 103–104—the dimensionless growth time required
to bring particles from subnano to micron sizes. The condi-
tion of negligible interaction of nuclei formed in a long pulse
with N� jstt

n �and with n��102� then requires 
� /kT�32
+ln�tn /�−�. Based on analysis of available experimental data
on transient nucleation in lithium disilicate, barriers in excess
of 35kT are expected,34 and similar analysis for several other
mainstream glasses gives comparable values.35 Thus, the
above requirement is satisfied at least for moderate pulses
with tn /�−�20. For longer pulses �or lower barriers� inter-
actions of either the Kolmogorov–Avrami or the Lifshits–
Slyozov type are expected to broaden the distribution and
round-off its flat top, and to destroy the conserved feature of
the number of nuclei N, turning it into a decaying function of
the growth time t.

Another potential limitation of the treatment comes from
continuing nucleation, i.e., non-negligible jst

+ during the
growth stage. Due to very long growth times, such nucle-
ation will result in a near-steady-state “secondary” distribu-
tion with a constant value jst

+ / ṙ+�exp�−
�
+ /kT+� �here the +

and the � superscripts will be re-introduced explicitly to
distinguish the growth and the nucleation stages�. This
should be small compared with the maximum of the primary
distribution. For a long pulse, where the maximum is
tn-independent, one obtains

exp	 
�
+

kT+ −

�

−

kT−
 � 1.

Note that this condition does not include ��, which other-
wise can significantly re-distribute the nucleation rates �as a
rule, �+ is much smaller than �− in crystallization experi-
ments�. The above condition is usually satisfied, but for a
short pulse it should be refined since the primary maximum
rapidly drops with decreasing tn. For an ultra short pulse the
maximum is roughly estimated as exp�X−e−X−
�

− /kT−�,
with a negative X given by Eq. �19�. In that case one has
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�
+

kT+ �

�

−

kT− + e−X − X ,

which in practice limits from below the length of a detect-
able nucleation pulse.

Conditions of negligible nucleation on the growth stage
will change if one considers the moments, which are usually
detected in experiments, rather than the distribution itself.
This is due to different structures of the primary distribution,
which is narrow in terms of r, and the secondary one, which
is broad. In order to distinguish the primary distribution from
a �-function, one needs at least the first correction in Eq.
�30�. For a given k, determined by specific experimental
technique, the above correction should be compared with the
corresponding moment of the secondary distribution, which
can be estimated as 1 / �k+1��rf�k+1jst

+ / ṙ�
+. With rf �r�

+t /�+ for
the ZF growth rate, and with r�

+�r�
−, one thus obtains for a

long pulse

	 t

�+
2

exp	−

�

+

kT+
 �
k�k + 1�

2
	 tn

�−
2

exp	−

�

−

kT−
 .

For selected nucleation and growth times the above condi-
tion establishes a lower boundary on 
�

+ /kT+. For example,
for the already discussed tn /�−�101 and t /�+�104 �and
with k�1� one requires 
�

+ /kT+−
�
− /kT−�14. This is sat-

isfied for parameters used in the numerical scheme with a
relatively large 
�

+ /kT+�58 �and with 
�
− /kT−�37�, but

generally speaking care should be taken here since direct
experimental data for the barrier on the growth stage are
often unavailable. In practice, if the possibility to neglect
secondary nucleation is unclear, one could use a “superposi-
tion principle,” evaluating the corresponding moment at tn

=0, and subtracting this value from similar measurements at
nonzero nucleation times.

VII. CONCLUSION

Based on a singular perturbation solution of the BD
nucleation equations, the distribution function of nuclei over
sizes following a nucleation pulse has been obtained analyti-
cally. This distribution is asymmetric, with a much sharper
cutoff at large sizes, and it ranges in shape from a near-
rectangular box of a fixed height, to a bell-shape of a fixed
width in the limits of very long and very short pulses, respec-
tively. Results are shown to be accurate numerically, and can
be useful for experiments based on the technique of a nucle-
ation pulse, such as the two-step annealing crystallization
studies.

APPENDIX A: NUMERICS

In order to mimic realistic conditions of two-step anneal-
ing in lithium disilicate1,2 nucleation at 7300K and growth at
8400K were considered with parameters consistent with ear-
lier Ref. 10, and close to those used by other groups.6,7,31

Specifically, for the nucleation stage n��18.2, 
� /kT
�36.9, ��1.94, a�4.06, and for the growth stage n�

�40.0, 
� /kT�58.2, ��3.53, a�2.91. �Note that time
units are dimensionless; in order to convert to physical units

one needs to match the TF rate ṙ� to experimental growth
rate u,36�. The upper boundary nmax was taken as 105 and
insensitivity to the selection was verified.

The general approach to solve the BD equations with TF
coefficients was described by Kelton co-workers.6,31 In the
present study a matrix representation similar to the one in
Ref. 37 was used, with the forward update scheme imple-
mented in Mathematica 6. The flux at a large size nup, close
to nmax, was treated as “nucleation rate.”

Specifically, when solving Eq. �67� distribution fn was
represented as a d-dimensional vector f�= �f2 , ¯ , fd+1� with
d=nmax−1. The update was written in terms of a propagator
P as

f��t + �� = P · f��t� + ��1e�, P = Î + �M̂ . �A1�

Here Î is a d�d identity matrix, e� = �1,0 ,0 , . . . ,0�, a

d-dimensional unit vector, and M̂ is a sparse, tridiagonal ma-
trix with nonzero elements

Mi,i = − ��i+1 + �i+1�, Mi,i+1 = �i+1, Mi+1,i = �i+1.

�A2�

The step � was selected as �10−3–10−2��− to ensure stability
of the scheme. The update scheme was applied on both the
nucleation and the growth stages, with the distribution estab-
lished by the end of the former serving as initial condition
for the latter. Nucleated particles were further grown deter-
ministically �see below�, and a seamless transition between
stochastic and deterministic distributions between nup and
nmax served as indicator of consistency of numerics.

Distribution of deterministically growing nuclei f�r , t�
was approximated by a histogram with a variable number of
bins. Each bin represented some size r, which increased in
time in accord with the deterministic growth law as ṙTF�t. At
each growth step �t��101–102�� a new bin was added at
the smallest growth size, corresponding to n=nup, with the
content of the bin given by

�
m=1

�t/�

jn�t + m�� .

For clarity, only selected points representing distributions are
shown in the figures, and no distinction is made between the
deterministic �growth� and the stochastic �nucleation� do-
mains.

In the present work the ZF was solved numerically on
the nucleation stage in order to check the accuracy of initial
conditions for growth, as in Fig. 1; numerics for the growth
stage is reported in Ref. 12. One notes that the ZF model
emerges as a limit of the TF one for a large critical number
n�, if the barrier 
� is fixed. To achieve this without changes
to the algorithm, the free energy difference between phases
was multiplied by a small ��1 /8, while the interfacial ten-
sion was multiplied by �2/3 to preserve the barrier but in-
crease the value of n��1 /�, thus minimizing the discreteness
effects. In order to engulf the large n�

+�320 in this limit an
nmax=600 was used, which determined the longest computa-
tional time, about 1h for a single nucleation-grow run in
extreme cases. In this sense, the ZF model is computationally
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much more involved than the TF one when describing nucle-
ation. The ZF model, however, allows a closed-form analyti-
cal description of growth. Indeed, a size r1 observed at time
t1 will acquire a larger value r after a selected time t, with r
given by

r = 1 + W��r1 − 1�exp�r1 − 1 + t − t1�� .

This allows one to start with a histogram f�r1 , t1� obtained
numerically after a modest growth time t1, and to “anneal”
this distribution analytically by using arbitrarily large t and

f�r,t� = f�r1,t1�
ṙ1

ṙ
.

Results obtained using this technique are reported in Ref. 12.
In contrast, the TF model requires a numerical annealing
during a much longer time t1 in order to achieve a typical
r1�1 and to observe the asymptotic regime described above.

APPENDIX B: BECKER–DÖRING MODEL

In the standard BD case the gain coefficient �n in Eq.
�67� is proportional to n2/3. This leads to a known growth rate

ṙBD =
r�

a�
�1 − exp�− a	1 −

r�

r

�� , �B1�

with the discreteness parameter a having the same meaning
as before, and the ZF growth rate emerging in the limit a
→0.

The general analysis is similar to the one for the TF
model in Sec. V. One can introduce �, the difference of
1 /�ṙBD from the inverse of the ZF rate, and express the BD
expectations for ti�r� and � as corrections to elementary ZF
expressions. Assuming all three models have identical � and
jst, the following differences are anticipated.

Since the BD model has the fastest decay and the slow-
est growth, the incubation time ti

BD�r� will be smaller than
the ZF counterpart ti�r� for small r and larger for large r,
respectively �see a similar analysis for the time-lag,32 which
differs by a constant ��.� This is in contrast with the TF case
with ti

TF�r�� ti�r� for any r. Thus, as follows from Eq. �10�,
while the TF model will predict a larger number of nuclei N
compared with the ZF case for similar nucleation times tn,
the BD model will give either more or less particles than ZF
for smaller or larger �, respectively, with the crossover ��

determined by a. Similar conclusions apply to the length of
the tail of the nucleation distribution, as in Fig. 1.

During the growth stage, the BD model will lead to the
fastest disappearance of the nucleation singularity due to
faster decay. General expressions for the asymptotic shapes
will remain valid, but connection with physical size r is now
given by

� �
a+

1 − exp�− a+�
�r − rf� , �B2�

and a similar factor appears in �� �r−rmax�. The front �or the
maximum� will increase at the slowest rate, and asymptoti-
cally its position is given by

rf =
1 − e−a

a
t −

a

ea − 1
ln t + O�1�, a = a+. �B3�

If the number of particles N is matched for every one of the
three models �implying a slightly different tn in each case�,
the TF distribution will be the widest and the BD one the
narrowest in r-variables.

1 P. James, Phys. Chem. Glasses 15, 95 �1974�.
2 J. Deubener, R. Brükner, and M. Sternizke, J. Non-Cryst. Solids 163, 1
�1993�.

3 Y. T. Shen, T. H. Kim, A. K. Gangopadhyay, and K. F. Kelton, Phys. Rev.
Lett. 102, 057801 �2009�.

4 C. Spinella, S. Lombardo, and F. Priolo, J. Appl. Phys. 84, 5383 �1998�.
5 G. Nicotra, R. A. Puglisi, S. Lombardo, C. Spinella, M. Vulpio, G. Am-
mendola, M. Bileci, and C. Gerardi, J. Appl. Phys. 95, 2049 �2004�.

6 K. F. Kelton, A. L. Greer, and C. V. Thompson, J. Chem. Phys. 79, 6261
�1983�.

7 L. Granasy and P. James, J. Chem. Phys. 113, 9810 �2000�.
8 M. Davis, Glass Sci. Technol. �Offenbach, Ger.� 73, 171 �2000�; J. Am.
Ceram. Soc. 84, 492 �2001�.

9 V. A. Shneidman, Sov. Phys. Tech. Phys. 33, 1338 �1988�.
10 V. A. Shneidman, J. Chem. Phys. 127, 041102 �2007�.
11 U. Gasser, E. R. Weeks, A. Schofield, P. N. Pusey, and D. A. Weitz,

Science 292, 258 �2001�.
12 V. A. Shneidman, Phys. Rev. Lett. 101, 205702 �2008�.
13 R. S. Sidin, R. Hagmeijer, and U. Sachs, Phys. Fluids 21, 073303 �2009�.
14 D. van Putten and V. Kalikmanov, J. Chem. Phys. 130, 164508 �2009�;

V. Holten and M. E. H. van Dongen, ibid. 130, 014102 �2009�.
15 J. Wolk, R. Strey, C. H. Heath, and B. E. Wyslouzil, J. Chem. Phys. 117,

4954 �2002�.
16 Ya. B. Zeldovich, Acta Physicochim. URSS 18, 1 �1943�.
17 J. Frenkel, Kinetic Theory of Liquids �Oxford University, Oxford, 1946�.
18 D. Turnbull and J. C. Fisher, J. Chem. Phys. 17, 71 �1949�.
19 L. Farkas, Z. Phys. Chem. 25, 236 �1927�.
20 R. Becker and W. Döring, Ann. Phys. 416, 719 �1935�.
21 A. N. Kolmogorov, Bull. Acad. Sci. USSR �Sci. Mater. Nat.� 3, 3551

�1937�.
22 M. Avrami, J. Chem. Phys. 7, 1103 �1939�.
23 I. M. Lifshits and V. V. Slyozov, Zh. Eksp. Teor. Fiz 35, 479 �1958� �Sov.

Phys. JETP 8, 331 �1959��.
24 C. Wagner, Z. Elektrochem. 65, 581 �1961�.
25 V. A. Shneidman, Phys. Rev. Lett. 95, 115701 �2005�.
26 V. A. Shneidman, Sov. Phys. Tech. Phys. 32, 76 �1987�.
27 V. A. Shneidman, Phys. Lett. A 143, 275 �1990�.
28 V. A. Shneidman, J. Chem. Phys. 115, 8141 �2001�.
29 M. Abramowitz and I. Stegun, Handbook of Mathematical Functions

�Dover, New York, 1972�.
30 V. A. Shneidman, J. Chem. Phys. 119, 12487 �2003�.
31 K. F. Kelton and A. L. Greer, J. Non-Cryst. Solids 79, 295 �1986�.
32 V.A. Shneidman and M. C. Weinberg, J. Chem. Phys. 97, 3629 �1992�.
33 V. A. Shneidman and E. V. Goldstein, J. Non-Cryst. Solids 351, 1512

�2005�.
34 V. A. Shneidman and M. C. Weinberg, Ceram. Trans. 30, 275 �1993�.
35 J. Deubener, private communication �1994�.
36 V. A. Shneidman and D. R. Uhlmann, J. Chem. Phys. 109, 186 �1998�.
37 V. A. Shneidman and G. M. Nita, Phys. Rev. Lett. 97, 065703 �2006�.

164115-13 Distribution formed in a nucleation pulse J. Chem. Phys. 131, 164115 �2009�

Downloaded 29 Oct 2009 to 128.235.92.53. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1016/0022-3093(93)90638-E
http://dx.doi.org/10.1103/PhysRevLett.102.057801
http://dx.doi.org/10.1103/PhysRevLett.102.057801
http://dx.doi.org/10.1063/1.368873
http://dx.doi.org/10.1063/1.1639950
http://dx.doi.org/10.1063/1.445731
http://dx.doi.org/10.1063/1.1322030
http://dx.doi.org/10.1111/j.1151-2916.2001.tb00688.x
http://dx.doi.org/10.1111/j.1151-2916.2001.tb00688.x
http://dx.doi.org/10.1063/1.2768032
http://dx.doi.org/10.1126/science.1058457
http://dx.doi.org/10.1103/PhysRevLett.101.205702
http://dx.doi.org/10.1063/1.3180863
http://dx.doi.org/10.1063/1.3120489
http://dx.doi.org/10.1063/1.3054634
http://dx.doi.org/10.1063/1.1498465
http://dx.doi.org/10.1063/1.1747055
http://dx.doi.org/10.1002/andp.19354160806
http://dx.doi.org/10.1063/1.1750380
http://dx.doi.org/10.1103/PhysRevLett.95.115701
http://dx.doi.org/10.1016/0375-9601(90)90336-M
http://dx.doi.org/10.1063/1.1409366
http://dx.doi.org/10.1063/1.1627327
http://dx.doi.org/10.1016/0022-3093(86)90229-2
http://dx.doi.org/10.1063/1.462946
http://dx.doi.org/10.1016/j.jnoncrysol.2005.03.039
http://dx.doi.org/10.1063/1.476548
http://dx.doi.org/10.1103/PhysRevLett.97.065703

