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Nucleation and growth of a stable phase in an Ising-type system

V. A. Shneidman, K. A. Jackson, and K. M. Beatty
Department of Materials Science and Engineering, The University of Arizona, Tucson, Arizona 85721

~Received 13 July 1998!

A system of nearest-neighbor interacting spins driven by a Glauber-type dynamics on a two-dimensional
hexagonal lattice was studied as a model for a first order phase transition. The primary goal of the study was
to verify the kinetic aspects of the conventional nucleation and growth description which is associated with the
motion of the interface, the growth and decay of individual nuclei, and with their size distributions. The role of
time-dependent nucleation was highlighted, and the overall kinetics of the phase transition were examined. By
an artificial modification of the dynamics in order to exclude some of the paths in the formation or destruction
of nuclei, coagulation effects were studied. The latter have only minor influence in the immediate vicinity of
the binodal, but increase rapidly upon intrusion into the metastable phase.@S0163-1829~99!02305-X#
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I. INTRODUCTION

It is hard to overestimate the role of Ising-type systems
the development of fundamental understanding of the na
of phase transitions. Thermodynamically, the attractive f
ture of such systems is that they are exactly solvable
sufficiently simple low-dimensional lattices.1,2 In the dy-
namic case exact solutions are available only for o
dimensional cases.3,4 Nevertheless, for higher dimension
dynamics of such systems can be obtained from large-s
computer simulations.4–14 Such simulations provide an im
portant insight into the validity of more intuitive descrip
tions, and enhance the understanding of a metastable s
The number of studies reflects the variety of applicatio
including ferromagnetic15 or ferroelectric11,16particles, melt-
to-crystal transitions,13,14 etc.

A typical destruction of a metastable phase proceeds
nucleation and growth of stable-phase nuclei. Stand
~‘‘classical’’! descriptions of both the nucleation17 and the
growth stages18,19 are well established. Nonclassical pictur
of nucleation were also developed in the more rec
past.20–22In principle, examination of nucleation and grow
dynamics in Ising-type systems should provide an estima
of accuracy of each type of the description, whether class
or nonclassical, and establish the limits of applicability of t
overall nucleation picture.

The majority of studies agrees that the nucleation raI
follows the prediction

ln I}2h12d2c~h!, ~1!

whered is the dimension of a system andh is the magnetic
field ~which is proportional to undercooling, see below!.
c(h) is expected to be a weak, logarithmic-type function
h. Simulations7,9,12 confirm the leading term in Eq.~1!, but
there does not yet exist a definite conclusion aboutc(h), so
that either classical9 or nonclassical12 interpretations of the
observations are invoked.

Still less is known about the specifically kinetic aspects
the description. For example, how accurate is the conv
tional description of the phase transformation kinetics due
PRB 590163-1829/99/59~5!/3579~11!/$15.00
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Kolmogorov and Avrami,18,19 which is routinely used to ex-
tract nucleation rates from simulation data?11,12 Or how one
can incorporate dynamic effects which can be due to inte
nucleation-growth kinetics, but which also can arise due
finite sizes of the simulated system?12

Due to the very large time scales which are required
observe the decay of a metastable state, fundamental
technical ~computational! issues of simulations are close
interwined and are often hard to resolve. In particular,
leastthreedefinitions of the nucleation rate can be requir
depending on the size of the system. The aforementio
definition based on the overall transformation kinetics is
pected to be applicable for strong and moderate underc
ings. In the latter case the rateI can also be evaluated d
rectly from the number of nucleated particles, provided d
for time-dependent cluster distributions are available. T
method also corresponds to the actual experimental meas
ments for crystal nucleation in glasses.23 Alternatively, for a
small system, i.e., the one for which at a given undercool
only one or a handful of nuclei can be observed, neither
the above methods can be applied, but the nucleation rate
be obtained from the average waiting time which is requi
to detect the first nucleus. Dynamic effects can play an
portant~and different! role in each of the methods. It woul
be of special interest to find a region where all three meth
are applicable and can be compared.

Examination of the kinetic aspects of nucleation a
growth in an Ising-type system is the primary goal of t
present study. As a starting point, we wish to maximize
formation, both thermodynamic and kinetic, which can
extracted from simulation at equilibrium (h50). At h50
there are no restrictions which arise due to finite lifetime
the metastable state, and accuracy of the treatment is lim
only by computational power. From the equilibrium obse
vations one can attempt to predict the nucleation kinetics
the undercooled region, and compare those predictions
the actual simulation data. In fact, a similar situation tak
place in real-life experiments as well~e.g., there are practi
cally no systems where the interfacial energy is measu
below the melting point, while accurate equilibrium me
surements are often possible!.
3579 ©1999 The American Physical Society
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A phenomenon which cannot be predicted quantitativ
from equilibrium simulations and which has to be taken in
account at deeper undercoolings, is coagulation
clusters.24,25 Here more empirical approaches are to be
voked, and Ising-type models provide a unique opportun
to isolate coagulation effects by blocking the mainstre
nucleation path and comparing the restricted and n
restricted dynamics~see next section!.

The computational model which will be used is due
Jackson, Gilmer, and Te¨mkin ~JGT! ~Ref. 13! and was origi-
nally developed to describe crystallization of an undercoo
melt with a special focus on post-nucleation motion of t
interface in three-dimensional, two-component systems.
present study is more nucleation oriented, and will be
stricted to two-dimensional and one-component situations
somewhat less studied, hexagonal lattice will be conside
This lattice is more symmetric than the traditional squ
grid, so that lattice-dependent anisotropic effects for sm
clusters are expected to be less pronounced. Although s
exact equilibrium results are available for the hexagonal c
as well,2 the main emphasis of the study will be on ‘‘me
suring’’ the key parameters, since exact solubility will n
hold for any more realistic generalization.

II. THE MODEL AND CLASSICAL NUCLEATION
THEORY

A. Model

In the JGT model the down spin is allowed to flip with
probability n7 while the up spin flips with a~generally dif-
ferent! probability n6. The phases associated with the p
dominantly up or down phases are relevant to ‘‘solid’’ a
‘‘liquid’’ in the model, although in the present study th
analogy will not be pursued, except for occasional use
terminology. The transition probabilities are given by

n75n exp$2DS%,

n65n exp$H/T%. ~2!

HereDS ~the ‘‘entropy of fusion’’! will be the main control-
ling parameter of the problem, and the energyH is deter-
mined by interaction between the nearest up spins. The
ergy of the up-up interaction is given by a constantf per
bond; note that in this description the JGT spins effectiv
take values 0~down! and 1~up!.

Consideringn7 as a background frequency which do
not depend on configuration, one has

n65n7exp~dH/T! ~3!

with temperatureT measured in the units of Boltzmann co
stant, anddH given by

dH5H2DST.

Equilibrium is achieved at

Teq5zf/2DS

with z being the number of nearest neighbors. BelowTeq
~which should also be smaller thanTc , the critical tempera-
ture!, spins have a tendency to orient themselves upwa
and the positive term
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zf/22TDS

is equivalent to a doubled magnetic field in convention
descriptions.

In the present study the bond energy and temperature
be fixed aszf/256 andT51.5, respectively, so that equ
librium is achieved forDS054. Otherwise, the value

dS5DS2DS0

is a ‘‘reduced undercooling.’’ A metastable state is achiev
for dS.0 with all spins initially oriented down. The com
putational realization of the model, as well as the clust
counting procedure are described in Ref. 14.

Occasionally, truncation of the dynamics described by
~2! will be performed for selected runs. The truncation
achieved by forbidding a single spin to flip in an all-dow
environment. Forbidding the up flips cuts off the prima
nucleation path which proceeds via formation of monome
dimers, etc. In the post-nucleation stage~i.e., when large
nuclei or a flat interface are already present in the syste!,
this allows one to eliminate the effects of coagulation w
newly formed clusters and to compare the description wit
nontruncated dynamics where such effects are present.
bidding the down flip of a single up spin is required to satis
detailed balance, so that the underlying thermodynamics
mains unchanged.

B. Classical and near-classical descriptions

The classical approach17,26 treats nucleation as a rando
walk of spherical nuclei in the space of their sizes. It
described by a Fokker-Planck type equation

] f

]t
52

] j

]R
, j 52DN

]

]R

f

N
. ~4!

Here f is the cluster distribution function,j is the flux andD
— the diffusion coefficient in theR space. A slightly more
complicated, discrete version of Eq.~4! is often considered
as a starting point for the classical description. This will
discussed in the Appendix, but leads to practically identi
results for the parameters considered in the present stud

The functionN(R) in Eq. ~4! is the ~quasi!equilibrium
distribution which corresponds to zero flux. It is taken
proportional to the thermodynamic probability of a fluctu
tion

N}exp$2W~R!/T% ~5!

with W(R) being the minimal work required to form a give
nucleus. In the two-dimensional case one has

W~R!52psR2xTdSpR2, ~6!

with s being a surface tension along a line, andx'0.93 the
equilibrium density of up spins.~The sizeR is defined in
such a manner thatpR2 corresponds to the total number o
spins in a cluster,n). The critical radius,R* , corresponds to
the maximum ofW(R), and the valueW* [W(R* ) repre-
sents a barrier to nucleation:

R* 5s/~xTdS!, W* 5psR* . ~7!
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Strictly speaking, the classical nucleation theory can
predict the prefactor in Eq.~5! ~Ref. 27! ~and evaluation of
such prefactors is a difficult problem even for stab
systems28!. Traditionally, however, this prefactor is chose
in such a manner that the distributionNn5N(R)/2pR has no
pre-exponential factor in an equation of type~5!. In other
words, if the classical theory17 is to be taken literally, one
should write

NCNT~R!5N02pR exp$2W~R!/T%, ~8!

with N0 being the number of ‘‘monomers’’~in our case, the
total number of down spins!. Later theories~e.g., Ref. 29! do
include a power-law prefactor inNn , although the value of
the exponent in this prefactor is nonuniversal and, m
likely depends on temperature.30

From simulations at the equilibrium temperature~see next
section! it follows that Eq.~5! works better without any pref
actors, whether classical or nonclassical. Thus, this exp
sion will be mostly used in the present work, although fro
a fundamental point of view the question remains open.

The work W(R) and the~quasi!equilibrium distribution
determine the thermodynamics of nucleation. Kinetics
determined by the diffusion coefficientD in Eq. ~4!. In the
model under considerationD is proportional ton7. Accord-
ing to Zeldovich,17 the diffusion coefficient can be obtaine
from deterministic~neglecting fluctuations! growth or decay
rates of individual nuclei via the Einstein relation

v52~D/T!dW/dR. ~9!

Here v(R) is the deterministic rate function which fo
surface-limited growth of nuclei~most likely, the case below
Tc! has the form

v~R!5
R

*
2

t S 1

R*
2

1

RD . ~10!

Heret is defined as (dv/dR)21 at R5R* . It is worth noting
that nonclassical nucleation descriptions31 also lead to a
similar expression in systems with a nonconserved order
rameter, which is the case for the Ising model conside
The universality of Eq.~10! bolsters one’s confidence in th
validity of the kinetic description, even if some of the the
modynamic issues are yet unresolved.

In the immediate vicinity ofR* , where the absolute val
ues v(R) are small, the deterministic Eq.~10! is violated,
and fluctuational corrections are important. The width
fluctuational region can be determined as

DR
2252

1

2T

d2W

dR2 U
*

5pxdS, ~11!

where the asterisk indicates a value calculated at the cri
size. ForDR!R* , i.e., for a high nucleation barrier, an
with standard boundary conditions,17 Eq. ~4! has a steady-
state solution with a size-independent flux
t

st

s-

e

a-
d.

f

al

j st5
D* N*
DRAp

5
DR

2tAp
N* . ~12!

The corresponding distribution function is given by

f st~R!.H N~R!, R* 2R@DR ,

1
2 N* exp$Z2%erfc~Z!, uR2R* u!R* ,

j st/v~R!, R2R* @DR

~13!

with a boundary layer of widthDR in the vicinity of the
critical size, and withZ[(R2R* )/DR .

The structure of the distribution given by Eq.~13! is due
to the asymptotic nature of the nucleation problem, i.e., d
to the conditionsW* @T and R* @1. When the latter are
satisfied, Eqs.~13! overlap in the common regions of appl
cability giving an asymptotically smooth distribution at a
sizes. In the same asymptotic limit a time-dependent solu
can also be obtained; the main difference at large sizes is
the steady-state flux in Eq.~13! is to be replaced by its time
~and size-! dependent value.32,33 This solution will be de-
scribed in Sec.V in connection with corresponding simu
tions.

The ideas of the classical description are based on w
has become known as a ‘‘droplet model,’’ i.e., one whi
treats clusters as macroscopic drops with a negligibly t
interface and with a bulk value of the surface tension. In
itively, the Ising-type models with nearest neighbor intera
tion, and belowTc , seem to be the best candidates for su
a description~although a first-principle justification remain
a nontrivial task34!. Essentially nonclassical effects are e
pected only for long-range interactions.10 A limitation of the
literally classical description is seen only in the pr
exponential of Eq.~8!. Indeed, despite the warning b
Farkas,17 it is conventionally assumed that the expressio
for the ~quasi!equilibrium distribution are valid down to the
smallest sizes. This contradicts the asymptotic nature of
droplet model and, as one can see from the Ising-type sys
under consideration, the number of single up spins is de
mined exclusively by the parameterDS and has less relation
to surface tension and other parameters which determine
work W(R). Nevertheless, these limitations of the drop
model are of a thermodynamic nature and when applied
nucleation can be overcome bymeasuring N(R) at T
5Teq, as discussed in the next section. Otherwise, from
purely kinetic point, the droplet model remains very attra
tive, and will be shown to provide a reasonably accur
description.

III. EQUILIBRIUM PROPERTIES

A. Distribution of clusters and the surface tension

At T5Teq the quasiequilibrium distributionN(R) coin-
cides with the steady-state distribution, and is given by

Neq~R!}exp~22psR/Teq!. ~14!

This exponential decay seems to be the right choice,
shown in Fig. 1. Distributions were recorded after each
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Monte Carlo steps, with a total of 53104 steps. Two runs
were performed, and the final distribution is the result of
averaging.

Correspondence with simulation data for the smallestR
51) and the largest (R56) sizes could be coincidental~the
former uncertainty due to the counting method which reco
the number of clusters with sizes betweenR21 andR, the
latter due to poor statistics for the largest size!. Nevertheless,
other points are fit well by Eq.~14!, giving s50.687. The
‘‘literally classical’’ approximation, Eq.~8!, gives a notice-
ably different slope, and even with an adjusted surface
sion ~larger by 16%! and an adjusted numerical prefactor,
gives a visually detectable curvature in Fig. 1.

B. Decay kinetics

At equilibrium Eq.~10! describes the rate of decrease
the size of a particle due to surface tension. This equa
should be considered in the limitR*→` while the ratio
R

*
2 /t remains finite. The size of a particle with an initi

valueR(0)5R0 is given by

R25R0
222S R

*
2

t D
eq

t. ~15!

This decrease in particle size with time is shown in Fig.
Since the slope of theR2(t) lines is expected to be indepen
dent of R0 , it can be used to evaluate the kinetic fact
R

*
2 /t. Indeed, curves obtained for different runs have

proximately the same slope. Note that the initial sizeR0 must
be sufficiently large~9 and 16 in the examples considered! to
ensure good resolution from the fluctuational clusters wh
at R&3 are abundant in the system.~The individuality of
clusters is lost in way the counting method is implement
and only their distribution is recorded, not allowing one
distinguish between a shrunk input cluster and a ne
formed fluctuational cluster of the same size.!

In the next section the parameters obtained will be use
order to predict the growth or decay of individual nuclei

FIG. 1. Distribution of clusters on 4803480 grid at equilibrium
temperature. The exponential interpolation~solid line! is used to
determine the surface tensions from Eq. ~14!. The classical nucle-
ation approximation has an additionalR dependence in the preex
ponential, Eq.~8!, and is shown~for a differents) by a dotted line.
e
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the undercooled region, and the motion of the interface
subsequent sections these parameters will be used to re
struct the nucleation kinetics.

In Ref. 8 Stauffer and Kertesz studied the transition
equilibrium distributions in an Ising model on a square gr
In principle, the kinetic parameters can be estimated from
time-dependence of such distributions.30 However, since at
least several fluctuational nuclei are required to ensure g
statistics, a large grid or a large number of Monte Carlo st
is required for any appreciableR. On the other hand, the
proposed method which monitors decay of artificially i
jected nuclei works faster for evaluation of the kinetic p
rameters since the required time scale is only of the orde
the decay time, and the grid needs only to slightly exceedR.

IV. FLAT INTERFACE AND NUCLEI IN THE
UNDERCOOLED REGION

In the undercooled regiondS.0 the velocity of a flat
interfacev`(dS) can be obtained from Eq.~10! in the limit
R→`. The parameterR

*
2 /t in this equation which is pro-

portional ton7 increases slightly from its equilibrium value
being multiplied by exp(dS). As discussed in the Appendix
such factors must be neglected within the accuracy of
continuous approximation, but should be included in the d
crete case. For the continuous case one thus has

v`~dS!5S R
*
2

t D
eq

1

R*
5S R

*
2

t D
eq

xTdS

s
. ~16!

The corresponding discrete expression which is numeric
very close is given in the Appendix as Eq.~A5!.

As seen from Fig. 3, for small undercoolings,dS,0.1,
the agreement of the prediction with simulation data is go
~no matching parameters are used at this point!. At deeper
undercoolings, however, the deviation from the near-lin
behavior increases. This is due to consumption of ne
formed nucleated clusters by the moving interface. To iso
the effects, the truncated description was invoked wh
single spin flips were forbidden~see Sec. II!, making nucle-

FIG. 2. Decrease of particle sizes driven by surface tensio
equilibrium temperature. Simulations are shown by dashed lin
All straight dotted lines have the same slope which correspond
2R

*
2 /t in Eq. ~15!. Time is the number of Monte Carlo steps.
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ation impossible in front of the interface. As seen from F
3, the truncated dynamics with no coagulation is much clo
to the prediction. There is still a possibility of seconda
nucleation in the bulk: up spins which are occasionally l
by the fluctuating interface can diffuse ahead of it, serving
nucleation seeds. This is observed for higher undercooli
and most likely explains the minor differences between
corresponding symbols~diamonds! and the solid line in Fig.
3.

For a curved interface, Eq.~10! with finite R should be
used in order to describe growth of overcritical and decay
subcritical clusters. This equation can be integrated, givin
family of curves parametrized by the initial size of a clus
R0

t

t
5

R2R0

R*
1 ln

R2R*
R02R*

. ~17!

Heret can be obtained from the known value ofR
*
2 /t which

has a near-equilibrium value and which was obtained fr
Fig. 2, givingt517.48/(dS)2. Indeed, at low undercooling
predictions of Eq.~17! are in reasonable agreement wi
simulation data for both subcritical and overcritical values
R0 . This is seen from Fig. 4. The initial cluster was creat
as an up-spin island. Such islands have zero entropy
require some small time for initial equilibration which can
noted by an almost vertical initial segment in Fig. 4.

For higher undercooling coagulational corrections
growth become important, as in the case with a flat interfa
Again, comparison of regular and truncated~no single spin
flip! descriptions allows the effect to be highlighted. AtdS
50.2 ~Fig. 5! the regular and truncated descriptions diff
mainly due to additional absorption of small clusters or o
casional coagulation with larger particles in the regular ca
Still deeper into the undercooled region, coagulation
nucleated clusters completely changes the growth dynam
making the growth rate an explicit function of time — s
Fig. 6. Here the classical~and near classical! pictures of
nucleation break down for kinetic reasons, in a region wh

FIG. 3. Growth rate as a function of reduced undercoolingdS
for a flat interface. Solid line: Eq.~A5!. Dotted line: simulation data
for regular type spin flip dynamics. Symbols: data for trunca
dynamics with some of the single spin flips forbidden~see text!.
.
er
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e
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no serious modifications of thermodynamics@i.e., deviations
of W(R) from Eq. ~6!# are expected.

V. NUCLEATION RATE AND THE DISTRIBUTION
OF LARGE CLUSTERS

A. Number of nuclei

The asymptotic solution of Eq.~4! for the transient flux of
nuclei in the growth region can be obtained using a matc
asymptotic technique, and is given by32,33

j ~R,t !5 j stexpH 2expF2
t2t i~R!

t G J . ~18!

Heret i(R) is the ‘‘incubation time’’ andt is defined in Sec.
II. For the two-dimensional case considered,t i is given by

t i~R!5tH R

R*
221 lnS R

R*
21D1 ln

2W*
kT J , ~19!

d

FIG. 4. Growth and decay of individual clusters with differe
initial sizes at a small undercoolingdS50.05. Solid lines are Eqs
~17! with R057,12,16~from left to right!. Dashed lines: simulation
results. The critical sizeR* is close to 10.

FIG. 5. Growth of overcritical particles atdS50.2 for the regu-
lar ~dashed line! and truncated~dotted line! dynamics. No single
spin flip prevents the formation of new clusters, as in Fig. 3.



-

t

le
at
e

l-
ac
in

ro

x-
-
.
n
o

n

g
r

less
s

rt

gu-
ber

.
e
e

a-

in

Eq.

e-
r-

h
re-

en-
-
o

y

-

i
e to
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which differs by t ln 3 from a corresponding three
dimensional expression@Eq. ~12! in Ref. 33#.

The number of particles with size larger thanR is ob-
tained as an integral of Eq.~18! over time, and is given by33

r~ t !5t j stE1~e2x!, x5@ t2t i~R!#/t. ~20!

Here E1 is the first exponential integral.35 In the limit t
→` the above equation gives

r~ t !. j st~ t2t lag!, t2t lag@t, ~21!

with t lag5t i1gt (g50.5772••• is Euler’s constant! known
as the ‘‘time lag.’’ Obviously,r(t) depends on the smalles
sizeR from which clusters are counted as ‘‘nucleated.’’

Applicability of the above equations requires many nuc
in a system, r(t)@1, before the coagulation starts
(N0)21 j stv

2t3;1. With the classical estimation for th
nucleation rate this gives

L@~dS!21/6exp~W* /3T! ~22!

for the size of the box,L5AN0, with the exponential term
consistent with earlier estimations.12aThe inequality~22! im-
plies not-too-small undercooling. At still larger undercoo
ings, however, particles start intensely coagulating with e
other soon after the onset of nucleation, eventually mak
Eqs.~20!, ~21! inapplicable.

For the 4803480 system considered a required comp
mise is reached atdS50.1. The simulatedr(t) curves are
shown in Fig. 7 for different values of the counting sizeR
together with the analytical approximation given by Eq.~20!.
The value oft51748 in this equation was taken from e
trapolation of equilibrium measurements~see previous sec
tion!, and the value ofj st'0.0033 was used for all curves
The correspondence is good, and such identification of a
lytical and simulation results provides an accurate way
‘‘measuring’’ the nucleation rate.

Application of the linearized Eq.~21! gives a comparable
~slightly smaller! value of j st. However, since this equatio
requires a notably larger time scale compared to Eq.~20!, it
breaks down at smaller undercoolings due to onset of coa
lation. On the other hand, Eq.~20! can be used at earlie

FIG. 6. Regular and truncated growth dynamics atdS50.25.
Note the absence of a linear region for the regular-type dynam
~with single spin flip!.
i

h
g

-

a-
f

u-

times as long as the transformed area remains small, say
than 10% ~and as long asr(t) in this equation exceed
unity!. In such a manner,j st was estimated as 0.1 atdS
50.15 and as 0.2 atdS50.2, respectively. Alternatively, if
the linearized Eq.~21! was applied to the full ascending pa
of ther(t) curve, the calculated values ofj st would turn out
smaller, around 0.035 and 0.1, respectively. Indeed, coa
lation adds clusters at small times and reduces their num
on later stages, so that the slope ofr(t) curves gets smaller
The presense of coagulation effects reveals itself by thR
dependence of the slope@which is not the case for a pur
nucleation and growth picture — see Eq.~21!#, and the
above two values ofj st also should be treated as an estim
tion.

B. Cluster distributions

With negligible coagulation, the distribution of clusters
the growth region is given by the standard expression

f ~R,t !5 j ~R,t !/v~R! ~23!

which is similar to the corresponding expression in Eq.~13!,
but with j st replaced by the actual time-dependent value,
~18!.

In contrast to the exponentially decaying distribution b
low R* , this distribution is characterized by a long, nea
constant tail with a sharp cutoff. The length of the tail,Ri(t),
can be obtained as the inverse of Eq.~19!; its maximal value
is determined by the coagulation effects. For smalldS a long
tail with Ri@R* is produced via the nucleation-growt
mechanism. For larger undercoolings the description is
stricted to smaller times with a much shorter tail,Ri*R* ,
which is cutoff less abruptly, approximately as an expon
tial. Finally, for very largedS, the distribution is not estab
lished beyondR* prior to the onset of coagulation, so that n
independent nucleation and growth occurs.

In Fig. 8 the nucleation-growth distributions given b
Eqs.~18!,~19!,~23! are shown atR.2R* for a small under-
cooling of dS50.1. For j st the previously mentioned mea
sured value of 0.0033 was used, whilet was determined as

cs
FIG. 7. Number of clustersr(t) with size exceedingR for dS

50.1 (R* '5). Solid lines: Eqs.~19!,~20!; dashed lines; simula-
tion data. The decrease in cluster numbers at large times is du
coagulation.
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R* /v` . The results are in reasonable agreement with sim
lation data, except for occasional large clusters at the la
time which appear due to coagulation. For completenes
the figure, atR,2R* , the steady-state distribution is show
The latter was obtained from Eq.~13! with a constant factor
adjusted to fit the observed distribution of small clusters
R52.

The first indication of coagulation is the appearance
clusters with sizes up toA2 larger than the length of th
nucleation tail due to binary collisions. This effect can
noticed even if otherwise the conditions for independ
nucleation and growth are satisfied, as in Fig. 8. For lar
dS coagulation affects the bulk of the cluster distribution
well. In particular, the role of the critical size becomes le
pronounced. For example, atdS50.25 the cluster distribu-
tion will not resemble in any way~and at any time! the L
shape of Fig. 8, being much closer to a power lawR2q with
q'3.

VI. WAITING TIME TO DETECT THE FIRST NUCLEUS

The approach of Sec. V is inapplicable to a small syst
where only a single nucleus can be formed. Such a nuc
will then grow to fill in the entire grid before any othe
particle is formed.5,9,12 The typical nucleation time is given
by 1/j st, while the growth time is of the orderL/v` . This
leads to an estimation which is opposite to the one in
~22! and which defines a ‘‘small’’ system.

In a small system nucleation becomes random. Mapp
to the previous description is achieved ifj is treated not as a
nucleation flux, but rather as probability flux~an idea due to
Kolmogorov18!. The probability density to detect a sing
nucleus after a waiting timet is thus given by

w~ t !5 j exp~2r!, ~24!

with r(t) still given by* jdt which now can be both smalle
or larger than 1.

In a steady-state case with the time-lag effects neglec
Eq. ~24! is just a Poissonian distribution with the averaget̄

FIG. 8. Distributions of clusters at different times fordS50.1.
Dashed and dotted lines: simulation data. Solid lines: Eqs.~13! at
R<2R* and Eqs.~23!,~18! at R.2R* with j st estimated from Fig.
7. The largest clusters att510 000 are due to coagulation and a
not described by the nucleation solution.
u-
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51/j st. Otherwise, if one assumes the validity of the lar
time approximation, Eq.~21!, then the average waiting tim
is given by an expression

t̄'1/j st1t lag, ~25!

which is well known in connection with experimental work
e.g., Ref. 36, and where now a properly evaluated s
dependent time-lag is employed. Note that the two contri
tions to t̄ in Eq. ~25! are separable sincej st is proportional to
N0 ~the system size! while t lag is independent ofN0 .

In the simulations,t̄ was obtained as an average over
runs, of the time to detect the first nucleus of a given sizeR.
A smaller 60360 grid was used in order to increaset̄ com-
pared tot lag. The value ofR510 was taken as a primar
choice, but values ofR57,12,15 were also considered.

The simulation results are shown in Fig. 9 together w
the conventional prediction, 1/j st ~an almost straight solid
line!. The temperature dependence ofj st was obtained from
Eq. ~12!. Equation~25! is also shown~dashed line! with R
510 chosen to compute the time-lag~other values ofR lead
to an expected minor spread in the values oft̄ ). Kinetic
corrections, indeed, become pronounced at larger value
the nucleation rate and substantially improve the corresp
dence with observations.

At dS50.1 the time-lag corrections are minor, and t
simulated waiting time is in reasonable agreement with
inverse of the nucleation rate obtained from Fig. 7. An u
explained, not too smoothdS dependence oft̄ should be
noted. Most likely, this reflects geometrical effects due
~nonmonotonic! deviations of the excess free energies fro
Eq. ~6!, but also can be partly due to not very good statisti

It is worth noting, that in many studies9,12 the time to
achieve a given value of the transformed areaX ~and not a
given sizeR) is considered. As long as as multiple dro
formation can be neglected, Eq.~25! will remain valid for
such definitions provided the sizeR in t lag(R) is replaced by
LAX/p.

FIG. 9. Average waiting time to detect the first nucleus in
60360 grid as a function ofdS21. Dashed line corresponds to Eq
~19!,~25!. Solid line is the inverse of Eq.~12!. The value atdS21

520 is a lower estimation since not all runs resulted in nucleati
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VII. TRANSFORMED VOLUME FRACTION

The two-dimensional version of the Kolmogorov-Avram
~KA ! expression is given by

X~ t !512expS 2
p

3N0
j stv`

2 t3D , ~26!

with X(t) being the relative area covered by the new pha
This expression accounts for interaction between clust
allowing their overlap, and assuming that otherwise
growth rate is unchanged. In the Ising-type model cons
ered, sharp corners created by overlapping clusters facil
flipping of near-by spins, which affects the growth. Neve
theless, one can expect that those effects are not crucial
being the only model which accounts for arbitrary stro
interactions, the KA picture can be useful for evaluation
j st at large undercoolings.

Since the KA expression assumes a size-indepen
growth rate,v5v` , it also cannot account for related tra
sient nucleation effects37 and for the contribution of near
critical clusters. The neglect of these two effects can be
orously justified for a high nucleation barrier. For small
but still large barriers, transient nucleation effects can
included if t in Eq. ~26! is replaced in accordance with37

t→t2t lnH t

t

W*
T J . ~27!

The contribution of near-critical particles can be appro
mately accounted for by assuming nucleation of partic
with an initial size R* , while subsequent growth is sti
treated as size independent.19 Formally, this is equivalent to
replacingt in Eq. ~26! in accordance with

t→t1t. ~28!

Obviously, this is not a rigorous approach since particles
not start growing right fromR* , and the neglect of contri
butions of smaller clusters which outnumber the critical on
is also unclear. Nevertheless, the above procedure turns
to be useful when describing the simulation data in stron
undercooled systems, before the contributions of small c
ters become so large that other effects are blurred.

An important point is that the two effects, Eqs.~27! and
~28! act in opposite directions. Thus, in the region of inte
mediate undercoolings these two effects partly compen
each other, and one can expect that the standard KA exp
sion, Eq.~26!, often works beyond the region of its forma
applicability.

From Fig. 10 it can be seen that the standard KA expr
sion works reasonably well for a moderate undercooling
dS50.1. The nucleation rate agrees with the values obtai
from Fig. 7, as will be discussed in the next section. Add
any of the aforementioned corrections worsens the co
spondence. For largerdS the contribution of small cluster
increases and the correction~28! is to be included in order to
approximate the simulated shape. Nucleation rates are
tracted from the modified KA curves by using the extrap
lated, rather than the actual growth ratev` ~i.e., solid line
from Fig. 3!. This choice looks consistent since the increa
in v` , dashed line in Fig. 3, is due to coagulation which
already taken into account in the KA interaction model.
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VIII. DISCUSSION

The nucleation description which is based on the ideas
droplet theory is asymptotic in nature, implying large valu
of the reduced nucleation barrier,W* /T, and of the critical
radius R* . The corresponding nucleation rate is expone
tially small, but the system is expected to be large enoug
enable formation of many nuclei before it gets covered
the new phase. In this approximation such aspects as pre
tors in the expression for the nucleation rate become of s
ondary importance. The dependence of those prefactor
the undercooling~magnetic field!, is negligible compared to
that of the exponential term, exp(2W* /T). The principal dif-
ference between various nucleation theories is thus redu
to the manner in which the work to form a critical nucle
~sic., interfacial energy,s) is defined. The classical approac
assumed macroscopic~bulk! values ofs. Other approaches
~see, e.g., Ref. 22, and references therein!, include mesos-
copic corrections toW* .

It is a rare situation that all requirements of the nucleat
description can be satisfied in simulations. Due to sma
values ofW* /T, nonasymptotic corrections become mo
important here, and the time interval for pure nucleation a
growth is shortened by coagulation. In particular, transi
nucleation effects are to be included in the description e
if evaluation of j st, the steady-state nucleation rate, is t
primary goal of a study. These effects and hence the meth
employed for analysis will be very different depending
the size of the system.

In a small system the nucleation rate is obtained fromt̄ ,
the average time to detect the first nucleus. In a st
asymptotic limit j st is just an inverse oft̄ . For smaller bar-
riers ~larger undercoolings! kinetic corrections become im
portant. In the case wheret̄ is still larger than the time-lag
due to transient nucleation and growth, one can obtainj st as

j st.~ t̄ 2t lag!
21. ~29!

Otherwise, the general probability distribution for th

FIG. 10. Time dependence of the total number of up spins o
4803480 grid for different values of undercooling,dS50.1 ~right!,
dS50.15 ~middle!, anddS50.2 ~left!. Solid lines: simulation data
Dashed-dotted line: the original Avrami expression, Eq.~26! for
dS50.1. Dotted and dashed lines: Eq.~26! with a shifted time, Eq.
~28! for dS50.15 anddS50.2, respectively.
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waiting times, Eq.~24!, can be used. An artificial reductio
of the system size~as going from the 4803480 to 60360

grid! can be useful to increaset̄ compared tot lag which is
grid-size independent, but has its limitations due to poten
contribution of boundary nucleation.38,39 In the present study
the waiting time approach permitted the examination of
region 0.05<dS<0.1 — see Fig. 11.

For an intermediatesystem~larger dS) one can directly
evaluatej st from the observed number of nucleir(t) by ap-
plying Eq. ~20!, as in Fig. 7. Results of this approach a
shown in Fig. 11 by diamonds. With increased undercool
the near-linear interval in ther(t) dependence which repre
sents steady-state nucleation~see Fig. 7! shortens due to co
agulation between clusters. Here consideration of trans
nucleation effects becomes especially helpful since they
low one to go to smaller times when coagulation is s
unimportant. In the study, data for the transformed area
than 10% were used in order to evaluatej st. The values oft
in Eq. ~20! were taken from near-equilibrium kineticst
}(dS)22 ~see Sec. IV!. For largerdS, however, the validity
of this extrapolation is unclear, and corresponding data
Fig. 11 for dS50.15 and 0.2 should be treated as estim
tions. Rather different values ofj st for these undercoolings
~errorbars in Fig. 11! are obtained by using the straight lin
approximation forr(t) given by Eq.~21!.

The Kolmogorov-Avrami~KA ! type description seems t
represent the only way to account for strong interactions
tween clusters due to their overlap, and thus to study syst
with nonsmall transformed areas. AtdS50.1 a straightfor-
ward application of the KA expression gives a value ofj st

which is consistent with direct nucleation measurements,
Fig. 11. For higherdS a minor adjustment~shift of time! in
the KA expression is usually sufficient in order to fit the da
~Fig. 10!, although Fig. 11 suggests that agreement w
nucleation rates obtained from the number of nuclei is no
good. Note that the extrapolated rather than the phys
growth rates are to be used in the KA expression. The la

FIG. 11. Nucleation rate per spinj st /N0 obtained by different
methods. Diamonds: from numbers of nucleated particles, Eq.~20!,
as in Fig. 7@errorbars are obtained by using the linearized Eq.~21!#;
squares: from the average waiting time corrected by the time-
Eq. ~29!; crosses: from Avrami-type expressions, as in Fig. 10.
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are enhanced by coagulation effects, but such effects ar
ready taken into account when the KA interaction mode
employed.

An interesting point is that the steady-state nucleation r
j st still can have a meaning at large undercoolings when
steady-state nucleation regime is absent. In that casej st is the
rate of nucleation of hypothetical, non-overlapping cluste
and this definition is consistent with extrapolations of mo
conventional data from lowerdS. Otherwise,j st should be
treated merely as a coefficient in the expression for the n
ber of particles at small time, Eq.~20!, or as a factor in the
exponent of the KA expression at larger times.

It was shown that a detailed thermodynamic and kine
study of clusters at equilibrium temperature~zero magnetic
field! allows one to predict the nucleation behavior in t
metastable region at small undercoolings. Surprisingly,
most straightforward exponential approximation of the eq
librium distribution function also turns the most accura
~see Fig. 1!. This contrasts with the classical and many ne
classical descriptions which have additional power-law f
tors in the pre-exponential. In the undercooled region
predictive abilities are limited, however, to smalldS — see
the dotted line in Fig. 11. At larger undercoolings the nuc
ation rate increases slower than the equilibrium predicti
At present, the reason for this is unclear. This could be eit
a single-nucleus thermodynamic effect~e.g., small nuclei
start ‘‘feeling’’ the hexagonal structure of the grid!, or an
effect due to cluster-cluster interactions. The aforementio
pre-exponential factor could also be important, although i
not suggested by Fig. 1.

Coagulation effects cannot be predicted quantitativ
from equilibrium measurements, but they are clearly o
served visually, and reveal their presence by producing c
ters which are too large for pure nucleation-growth mec
nisms — see Fig. 8. Coagulation effects increase gro
rates for flat and curved interfaces; the latter becomes o
ous once those effects are ‘‘switched off,’’ as in Figs. 5 a
6. A quantitative analytical description of such effects r
mains, however, a task for future studies.

IX. CONCLUSION

In the present study nucleation and growth kinetics in
Ising-type system on a hexagonal grid have been analy
Three different methods were employed to extract the val
of the nucleation rate from simulation data for, respective
small, intermediate, and large undercoolings~magnetic
fields! and were compared to each other in overlapping
gions. Transient nucleation and growth effects become
portant with increased undercooling, but otherwise
droplet-model based nucleation picture remains consist
especially its kinetic part. Up to moderate undercoolings
nucleation-growth behavior can be predicted quantitativ
from thermodynamic and kinetic equilibrium ‘‘measur
ments.’’

At larger undercoolings deviations from the drople
model predictions were observed~smaller nucleation rates!,
even though the critical cluster still contained several tens
spins. Coagulation effects also become important, and t
can be highlighted by an artificial modification of the sp
flip kinetics on the postnucleation stage.
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APPENDIX: DISCRETE VERSION OF THE
NUCLEATION EQUATION

The original model which was discussed by Fark
Becker and Do¨ring ~BD! ~Ref. 17! was formulated in terms
of a discrete variablen5pR2, the number of monomers in
cluster. The kinetic equation for the distribution functio
f n5 f (R)dR/dn, has the form

]

]t
f n

BD5 j n2 j n11 , j n5bn21Nn21S f n21

Nn21
2

f n

Nn
D .

~A1!

Here bn'D(R)(dn/dR)2 is the gain coefficient and th
equilibrium distributionNn is given byN0exp$2W(R)/T%, in
accord with Eq.~8!.

In the leading asymptotic approximation~large W* /T!
the BD equation gives a steady-state nucleation rate whic
identical to Eq.~12!, and a distribution which coincides wit
Eq. ~13! except for a differentv(R), as discussed below. Th
functional form of the time-dependent nucleation flux, E
~18!, also remains unchanged.32,33A modification is required
only for the growth rate. In the general case for a smoothbn ,
the discrete version of Eq.~9! takes the form32,40

vn.bn$12exp~Wn8/T!%, ~A2!

where the prime indicates the derivative with respect ton,
andvn5v(R)dn/dR. After specification of the parameter
one obtains

vBD~R!5
R*

txdS
$12exp@xdS~R* /R21!#%, ~A3!

where the superscript indicates the ‘‘Becker-Do¨ring’’ model.
For smallxdS this expression coincides with Eq.~10!. Con-
s

tt

ys
,

is

.

sistency of the treatment thus requires neglecting all te
which are higher order indS when employing the continuou
description based on Eq.~4!.

Modification of the growth rate leads to the followin
changes in the results discussed in the main part of the pa

At equilibrium, Eq.~A3! gives

vBD5S R
*
2

t D
eq

T

sH 12expS 2
s

TRD J . ~A4!

In contrast to its continuous counterpart this expression c
not be integrated in elementary functions. In the present c
this is hardly required, however, since for the values
s/T,0.5 and the minimal value ofR.3, the difference is
unobservable within the accuracy of simulations.

For the velocity of a flat interface one has

v`
BD~dS!.S R

*
2

t D
eq

T

s
@exp~dS!21#. ~A5!

Strictly speaking, the term21 in the square brackets shou
be replaced by exp$(x21)dS%, but the difference is undetect
able. Equation~A5! which numerically is very close to Eq
~16!, was used for comparison with simulation data in Fig.

The functional form of Eq.~20! for the number of nucle-
ated particles also holds in the BD case. Modification of
growth rate somewhat complicates the incubation timet i
and thus the time-lag.33 The main difference comes from
large sizes; replacing the termtR/R* in Eq. ~19! by
R/vBD(`) makes this expression approximately applica
for the BD case as well. A focused study of the differenc
between the discrete and continuous descriptions in the ti
lag problem is contained, e.g., in Ref. 41.
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