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Nucleation and growth of a stable phase in an Ising-type system
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A system of nearest-neighbor interacting spins driven by a Glauber-type dynamics on a two-dimensional
hexagonal lattice was studied as a model for a first order phase transition. The primary goal of the study was
to verify the kinetic aspects of the conventional nucleation and growth description which is associated with the
motion of the interface, the growth and decay of individual nuclei, and with their size distributions. The role of
time-dependent nucleation was highlighted, and the overall kinetics of the phase transition were examined. By
an artificial modification of the dynamics in order to exclude some of the paths in the formation or destruction
of nuclei, coagulation effects were studied. The latter have only minor influence in the immediate vicinity of
the binodal, but increase rapidly upon intrusion into the metastable plg&E53-18209)02305-X]

. INTRODUCTION Kolmogorov and Avramt®1®which is routinely used to ex-
tract nucleation rates from simulation data Or how one

It is hard to overestimate the role of Ising-type systems incan incorporate dynamic effects which can be due to internal
the development of fundamental understanding of the naturgucleation-growth kinetics, but which also can arise due to
of phase transitions. Thermodynamically, the attractive feafinite sizes of the simulated systei'ﬁ?
ture of such systems is that they are exactly solvable for Due to the very large time scales which are required to
sufficiently simple low-dimensional latticés. In the dy-  observe the decay of a metastable state, fundamental and
namic case exact solutions are available only for onetechnical (computational issues of simulations are closely
dimensional case! Nevertheless, for higher dimensions interwined and are often hard to resolve. In particular, at
dynamics of such systems can be obtained from large-scaleastthree definitions of the nucleation rate can be required
computer simulation$.** Such simulations provide an im- depending on the size of the system. The aforementioned
portant insight into the validity of more intuitive descrip- definition based on the overall transformation kinetics is ex-
tions, and enhance the understanding of a metastable stapgscted to be applicable for strong and moderate undercool-
The number of studies reflects the variety of applicationsings. In the latter case the ratecan also be evaluated di-
including ferromagnetic or ferroelectri¢™*® particles, melt-  rectly from the number of nucleated particles, provided data
to-crystal transition>** etc. for time-dependent cluster distributions are available. This

A typical destruction of a metastable phase proceeds Vignethod also corresponds to the actual experimental measure-
nucleation and growth of stable-phase nuclei. Standaréhents for crystal nucleation in glassésAlternatively, for a
(“classical”) descriptions of both the nucleatidnand the  small system, i.e., the one for which at a given undercooling
growth stage’$?are well established. Nonclassical picturesonly one or a handful of nuclei can be observed, neither of
of nucleation were also developed in the more recenthe above methods can be applied, but the nucleation rate can
past’®~*?In principle, examination of nucleation and growth pe obtained from the average waiting time which is required
dynamics in Ising-type systems should provide an estimatiofo detect the first nucleus. Dynamic effects can play an im-
of accuracy of each type of the description, whether classicgortant(and different role in each of the methods. It would
or nonclassical, and establish the limits of applicability of thebe of special interest to find a region where all three methods

overall nucleation picture. are applicable and can be compared.
The majority of studies agrees that the nucleation tate  Examination of the kinetic aspects of nucleation and
follows the prediction growth in an Ising-type system is the primary goal of the
present study. As a starting point, we wish to maximize in-
Inloc—h1"9—y(h), (1)  formation, both thermodynamic and kinetic, which can be

extracted from simulation at equilibriumrh&0). At h=0

whered is the dimension of a system aihds the magnetic there are no restrictions which arise due to finite lifetime of
field (which is proportional to undercooling, see bejow the metastable state, and accuracy of the treatment is limited
y(h) is expected to be a weak, logarithmic-type function ofonly by computational power. From the equilibrium obser-
h. Simulation$®? confirm the leading term in Eq1), but  vations one can attempt to predict the nucleation kinetics in
there does not yet exist a definite conclusion abg(it), so  the undercooled region, and compare those predictions with
that either classicalor nonclassicaf interpretations of the the actual simulation data. In fact, a similar situation takes
observations are invoked. place in real-life experiments as wé#.g., there are practi-

Still less is known about the specifically kinetic aspects ofcally no systems where the interfacial energy is measured
the description. For example, how accurate is the converbelow the melting point, while accurate equilibrium mea-
tional description of the phase transformation kinetics due tsurements are often possiple
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A phenomenon which cannot be predicted quantitatively zpl2—TAS
from equilibrium simulations and which has to be taken into
account at deeper undercoolings, is coagulation ofS equivalent to a doubled magnetic field in conventional
clusters?*?> Here more empirical approaches are to be in-descriptions.
voked, and Ising-type models provide a unique opportunity In the present study the bond energy and temperature will
to isolate coagulation effects by blocking the mainstreanbe fixed asz¢/2=6 andT=1.5, respectively, so that equi-
nucleation path and comparing the restricted and nonlibrium is achieved forA Sy=4. Otherwise, the value
restricted dynamicgsee next sectign

The computational model which will be used is due to 0S=AS-AS,
Jackson, Gilmer, and Tigkin (JGT) (Ref. 13 and was origi-
nally developed to describe crystallization of an undercoole

melt with a special focus on post-nucleation motion of the : o
) . . . utational realization of the model, as well as the cluster-
interface in three-dimensional, two-component systems. Th . . .

counting procedure are described in Ref. 14.

D e e 1% Occasionaly, tuncaton of e ynarics desrioed by €
X " '(2) will be performed for selected runs. The truncation is

somewhat less studied, hexagonal lattice will be considered,”, . - . : L

. N ; " dchieved by forbidding a single spin to flip in an all-down
This lattice is more symmetric than the traditional square nvironment. Forbidding the up flips cuts off the primar
grid, so that lattice-dependent anisotropic effects for smalf leati j h which 9 d pI pf : ¢ P Y
clusters are expected to be less pronounced. Although so fucleation path which proceeds via formation of monomers,

o . rT21‘|3mers, etc. In the post-nucleation sta@e., when large
exact equilibrium results are available for the hexagonal Case \clei or a flat interface are already present in the system

2 H H H g
as yve!!, the main emphasis Of. the study will be_on Mea- 1his allows one to eliminate the effects of coagulation with
suring” the key parameters, since exact solubility will not - :
. o newly formed clusters and to compare the description with a
hold for any more realistic generalization. ;
nontruncated dynamics where such effects are present. For-
bidding the down flip of a single up spin is required to satisfy

is a “reduced undercooling.” A metastable state is achieved
or 6S>0 with all spins initially oriented down. The com-

IIl. THE MODEL AND CLASSICAL NUCLEATION detailed balance, so that the underlying thermodynamics re-
THEORY mains unchanged.
A. Model
In the JGT model the down spin is allowed to flip with a B. Classical and near-classical descriptions
probability »* while the up spin flips with dgenerally dif- The classical approatf?® treats nucleation as a random

feren) probability »*. The phases associated with the pre-walk of spherical nuclei in the space of their sizes. It is
dominantly up or down phases are relevant to “solid” anddescribed by a Fokker-Planck type equation
“liquid” in the model, although in the present study this

analogy will not be pursued, except for occasional use of of  9j o J f
terminology. The transition probabilities are given by 9t R’ 1== DNﬁ N° (4)
v =vexp—AS}, Heref is the cluster distribution function,is the flux andD
. — the diffusion coefficient in théR space. A slightly more
v-=vexpg(H/T}. (2 complicated, discrete version of E@) is often considered

HereAS (the “entropy of fusion”) will be the main control- 85 @ starting point for the_ classical descriptior). This_, wiII.be
ling parameter of the problem, and the enetgyis deter- discussed in the Appendix, but leads to practically identical
mined by interaction between the nearest up spins. The efesults for the parameters considered in the present study.
ergy of the up-up interaction is given by a constgnper ~ 1he functionN(R) in Eq. (4) is the (quas)equilibrium
bond: note that in this description the JGT spins effectivelydistribution which corresponds to zero flux. It is taken as
take values Qdown) and 1(up). proportional to the thermodynamic probability of a fluctua-

Consideringr™ as a background frequency which doeston
not depend on configuration, one has

Ve =vrexp(oH/T) ® with W(R) being the minimal work required to form a given
with temperaturdl measured in the units of Boltzmann con- nucleus. In the two-dimensional case one has
stant, andsH given by

Nocexp{—W(R)/T} 6)

W(R)=2moR— xT8S7R?, (6)
OH=H—-AST.
. ) with o being a surface tension along a line, ayve 0.93 the
Equilibrium is achieved at equilibrium density of up spins(The sizeR is defined in
T.=2$I2AS such a manner thatR? corresponds to the total number of
eq i f i ;
spins in a clustem). The critical radiusR, , corresponds to
with z being the number of nearest neighbors. Beldyy the maximum ofW(R), and the valueV, =W(R,) repre-
(which should also be smaller than, the critical tempera- sents a barrier to nucleation:
ture), spins have a tendency to orient themselves upwards,
and the positive term R,=0/(xT8S), W,=woR,. @)
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Strictly speaking, the classical nucleation theory cannot D.N A

predict the prefactor in E¢5) (Ref. 27 (and evaluation of jom——= —N, . (12)

such prefactors is a difficult problem even for stable AR\/; 27\m

system&’). Traditionally, however, this prefactor is chosen

in such a manner that the distributidi = N(R)/27R has no The corresponding distribution function is given by

pre-exponential factor in an equation of tyg®. In other

words, if the classical theot{is to be taken literally, one

should write N(R), R, —R>Ag,

fs(R)= %N*exp[zz}erfc(Z), |R_ R*|<R~k- (13

NCNT(R):NOZWReXm_W(R)/T}, (8) jst/U(R); R— R*>AR

with Ny being the number of “monomers{in our case, the
total number of down spinsLater theoriege.g., Ref. 29do
include a power-law prefactor iN,,, although the value of
the exponent in this prefactor is nonuniversal and, mosf,
likely depends on temperatut®.

From simulations at the equilibrium temperat@see next
sectior) it follows that Eq.(5) works better without any pref-

with a boundary layer of widthy in the vicinity of the

critical size, and witv=(R—R,)/Ag.

The structure of the distribution given by Ed.3) is due

the asymptotic nature of the nucleation problem, i.e., due

to the conditionswW, >T and R, >1. When the latter are

satisfied, Eqs(13) overlap in the common regions of appli-

cability giving an asymptotically smooth distribution at all

sion will be mostly used in the present work, although frOm§"|zes. In the same asymptotic limit a time-dependent solution
' can also be obtained; the main difference at large sizes is that

a fundamental point of view the question remains open. . . o
o Lo the steady-state flux in E@L3) is to be replaced by its time-
The work W(R) and the(quasjequilibrium distribution (and size)}/ dependent Va?l]jg,gs This solllajtion wiI)I/ be de-

determine the thermodynamics of nucleation. Kinetics are__ . . . : . . X i
determined by the diffusion coefficiel in Eq. (4). In the eﬁgrr:l;ed In Sec.Vin connection with corresponding simula

model under porll;s,ldera'gldh IS proporpqnal tov™. Accorq- The ideas of the classical description are based on what
ing to Zeldovich;," the diffusion coefficient can be obtained has become known as a “droplet model,” i.e., one which

from deterministicneglecting fluctuationsgrowth or decay treats clusters as macroscopic drops with a negligibly thin

rates of indvidual nuclei via the Einstein relation interface and with a bulk value of the surface tension. Intu-
itively, the Ising-type models with nearest neighbor interac-
v=—(D/T)dW/dR. (9) tion, and belowT., seem to be the best candidates for such
a description(although a first-principle justification remains
Here v(R) is the deterministic rate function which for & nontrivial task®). Essentiqlly non.classic.alleff.ects are ex-
surface-limited growth of nucldimost likely, the case below Pected only for long-range .mter.actmi'%A limitation of the
T,) has the form literally qlassmal description is seen only in the pre-
exponential of Eq.(8). Indeed, despite the warning by
Farkas:’ it is conventionally assumed that the expressions
RI(1 1 for the (quas)equilibrium distribution are valid down to the
I R, R/ (10 smallest sizes. This contradicts the asymptotic nature of the
droplet model and, as one can see from the Ising-type system
under consideration, the number of single up spins is deter-
mined exclusively by the paramet&iS and has less relation
similar expression in systems with a nonconserved order pép surface tension and other parameters which determine the

rameter, which is the case for the Ising model considere _ork W(R). Nevertheless, th_ese limitations of the dr(_)plet
The universality of Eq(10) bolsters one’s confidence in the model are of a thermodynamic nature and when applied to

validity of the kinetic description, even if some of the ther- nucleation can be overcome txylea_surlng NR). at T
modynamic issues are yet unresolved. =Teq, as discussed in the next section. Otherwise, from a

In the immediate vicinity oR, , where the absolute val- purely kinet!c point, the droplet mOdeI remains very attrac-
uesv(R) are small, the deterministic E410) is violated, tive, and will be shown to provide a reasonably accurate

and fluctuational corrections are important. The width OfdeSCI’IptIOI’I.
fluctuational region can be determined as

v(R)

Herer is defined asqu/dR) "t atR=R, . It is worth noting
that nonclassical nucleation descriptithslso lead to a

Ill. EQUILIBRIUM PROPERTIES

1 d2w A. Distribution of clusters and the surface tension

-2_ _ - L o .
Ar"= R, mX IS, (12) At T=T,, the quasiequilibrium distributioN(R) coin-

cides with the steady-state distribution, and is given by

where the asterisk indicates a value calculated at the critical Ned R)xexp(—2moR/Tey). (14
. . . . . e e
size. ForAg<R, , i.e., for a high nucleation barrier, and
with standard boundary conditioh§Eq. (4) has a steady- This exponential decay seems to be the right choice, as
state solution with a size-independent flux shown in Fig. 1. Distributions were recorded after each 10
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FIG. 1. Distribution of clusters on 480480 grid at equilibrium FIG. 2. Decrease of particle sizes driven by surface tension at

temperature. The exponential interpolatitolid line) is used to  equilibrium temperature. Simulations are shown by dashed lines.
determine the surface tensioenfrom Eq.(14). The classical nucle- All straight dotted lines have the same slope which corresponds to
ation approximation has an additiorRldependence in the preex- 2R2/7 in Eq. (15). Time is the number of Monte Carlo steps.
ponential, Eq(8), and is showrifor a differents) by a dotted line.
the undercooled region, and the motion of the interface. In

Monte Carlo steps, with a total of>610* steps. Two runs subsequent sections these parameters will be used to recon-
were performed, and the final distribution is the result of thestruct the nucleation kinetics.
averaging. In Ref. 8 Stauffer and Kertesz studied the transition to

Correspondence with simulation data for the small&st ( equilibrium distributions in an Ising model on a square grid.
=1) and the largestR=6) sizes could be coincidentéhe In principle, the kinetic parameters can be estimated from the
former uncertainty due to the counting method which recordsime-dependence of such distributiciisHowever, since at
the number of clusters with sizes betweRr 1 andR, the  least several fluctuational nuclei are required to ensure good
latter due to poor statistics for the largest giddevertheless, statistics, a large grid or a large number of Monte Carlo steps
other points are fit well by Eq.14), giving 0=0.687. The is required for any appreciable. On the other hand, the
“literally classical” approximation, Eq(8), gives a notice- proposed method which monitors decay of artificially in-
ably different slope, and even with an adjusted surface tenjected nuclei works faster for evaluation of the kinetic pa-
sion (larger by 16% and an adjusted numerical prefactor, it rameters since the required time scale is only of the order of
gives a visually detectable curvature in Fig. 1. the decay time, and the grid needs only to slightly exdeed

B. Decay kinetics IV. FLAT INTERFACE AND NUCLEI IN THE

At equilibrium Eq.(10) describes the rate of decrease of UNDERCOOLED REGION

the size of a particle due to surface tension. This equation |n the undercooled regio@S>0 the velocity of a flat

should be considered in the limR, —c while the ratio interfacev..(8S) can be obtained from Eq10) in the limit
Ri/r remains finite. The size of a particle with an initial R—». The parameteRi/r in this equation which is pro-

valueR(0)=R is given by portional tov™ increases slightly from its equilibrium value,
) being multiplied by expfS). As discussed in the Appendix,

R2=R2—2(R—*) t (15) such factors must be neglected within the accuracy of the

0 eq ' continuous approximation, but should be included in the dis-

crete case. For the continuous case one thus has

This decrease in particle size with time is shown in Fig. 2.

Since the slope of thB?(t) lines is expected to be indepen- i 1 Ri xToS

dent of Ry, it can be used to evaluate the kinetic factor v(8S)= ) R\ 7

R2/r. Indeed, curves obtained for different runs have ap- e e

proximately the same slope. Note that the initial $kgemust ~ The corresponding discrete expression which is numerically

be sufficiently largg9 and 16 in the examples considerénl  very close is given in the Appendix as H@5).

ensure good resolution from the fluctuational clusters which As seen from Fig. 3, for small undercooling8$<0.1,

at R<3 are abundant in the systerfThe individuality of the agreement of the prediction with simulation data is good

clusters is lost in way the counting method is implemented(no matching parameters are used at this poiit deeper

and only their distribution is recorded, not allowing one toundercoolings, however, the deviation from the near-linear

distinguish between a shrunk input cluster and a newhbehavior increases. This is due to consumption of newly

formed fluctuational cluster of the same sjze. formed nucleated clusters by the moving interface. To isolate
In the next section the parameters obtained will be used ithe effects, the truncated description was invoked where

order to predict the growth or decay of individual nuclei in single spin flips were forbiddefsee Sec. )| making nucle-

e (16)
T o



PRB 59

0.012

0.008

GROWTH RATE
TIME

0.004

0 1 1 1
0.1
UNDERCOOLING

0.2

FIG. 3. Growth rate as a function of reduced undercoobigy
for a flat interface. Solid line: EA5). Dotted line: simulation data
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FIG. 4. Growth and decay of individual clusters with different
initial sizes at a small undercoolingS=0.05. Solid lines are Egs.

for regular type spin flip dynamics. Symbols: data for truncated(17) with R,=7,12,16(from left to right. Dashed lines: simulation
dynamics with some of the single spin flips forbiddeee text results. The critical siz®, is close to 10.

ation impossible in front of the interface. As seen from Fig.no serious modifications of thermodynamjcg., deviations
3, the truncated dynamics with no coagulation is much closeof W(R) from Eq. (6)] are expected.

to the prediction. There is still a possibility of secondary
nucleation in the bulk: up spins which are occasionally lost
by the fluctuating interface can diffuse ahead of it, serving as
nucleation seeds. This is observed for higher undercoolings,
and most likely explains the minor differences between the
corresponding symbol@iamond$ and the solid line in Fig.
3.

For a curved interface, Eq10) with finite R should be
used in order to describe growth of overcritical and decay o
subcritical clusters. This equation can be integrated, giving a
family of curves parametrized by the initial size of a cluster
Ro

V. NUCLEATION RATE AND THE DISTRIBUTION
OF LARGE CLUSTERS

A. Number of nuclei

The asymptotic solution of Eq4) for the transient flux of
nuclei in the growth region can be obtained using a matched
asymptotic technique, and is given®py®

. . t—t(R)
J(R,t)=]stex4 —exp{— T”

(18

Heret;(R) is the “incubation time” andr is defined in Sec.

R—R,
RO_R* .

t—R_R0+I
T R, n

17

Here r can be obtained from the known valueRq/ r which
has a near-equilibrium value and which was obtained from
Fig. 2, giving 7=17.48/(5S)2. Indeed, at low undercoolings
predictions of Eqg.(17) are in reasonable agreement with
simulation data for both subcritical and overcritical values of
Ry. This is seen from Fig. 4. The initial cluster was created
as an up-spin island. Such islands have zero entropy ani
require some small time for initial equilibration which can be
noted by an almost vertical initial segment in Fig. 4. ]
For higher undercooling coagulational corrections to 2
growth become important, as in the case with a flat interface ™
Again, comparison of regular and truncat@w single spin
flip) descriptions allows the effect to be highlighted. &%
=0.2 (Fig. 5 the regular and truncated descriptions differ
mainly due to additional absorption of small clusters or oc-
casional coagulation with larger particles in the regular case.
Still deeper into the undercooled region, coagulation of
nucleated clusters completely changes the growth dynamics,
making the growth rate an explicit function of time — see
Fig. 6. Here the classicaland near classicplpictures of

R
ti(R)zr[——2+In

R,

Il. For the two-dimensional case considergds given by

*

kT

+In

R—*—l ], (19

20 -

single spin flip
no single spin flip

coagulation

event \

1000

3000

FIG. 5. Growth of overcritical particles &@S= 0.2 for the regu-
lar (dashed ling and truncateddotted ling dynamics. No single

nucleation break down for kinetic reasons, in a region wherapin flip prevents the formation of new clusters, as in Fig. 3.
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FIG. 6. Regular and truncated growth dynamicsé&t=0.25. FIG. 7. Number of clusterp(t) with size exceeding for §S
Note the absence of a linear region for the regular-type dynamicss0.1 (R, ~5). Solid lines: Eqs(19),(20); dashed lines; simula-
(with single spin flip. tion data. The decrease in cluster numbers at large times is due to
coagulation.
which differs by 7In3 from a corresponding three-
dimensional expressidiEq. (12) in Ref. 33. times as long as the transformed area remains small, say less

The number of particles with size larger th&is ob- than 10% (and as long ag(t) in this equation exceeds
tained as an integral of E¢18) over time, and is given 5§ unity). In such a mannerjg was estimated as 0.1 &S
=0.15 and as 0.2 a8S=0.2, respectively. Alternatively, if
p()=TjqEs(e7), x=[t—t;(R)]/. (200 the linearized Eq(21) was applied to the full ascending part
of the p(t) curve, the calculated values jpf would turn out
smaller, around 0.035 and 0.1, respectively. Indeed, coagu-
lation adds clusters at small times and reduces their number
p()=]s(t—tny, t—tu>T, (21) on later stages, so that the slopepdf) curves gets smaller.
. ) The presense of coagulation effects reveals itself byRhe
With tigg=t;+y7 (y=0.5772 . is Euler's constantknown  gependence of the sloevhich is not the case for a pure

size R from which clusters are counted as “nucleated.”  apove two values o also should be treated as an estima-
Applicability of the above equations requires many nucleitjgp

in a system, p(t)>1, before the coagulation starts at
(Ng) Yjsw?t3~1. With the classical estimation for the
nucleation rate this gives

Here E; is the first exponential integrdl. In the limit t
—oo the above equation gives

B. Cluster distributions

With negligible coagulation, the distribution of clusters in
L>(8S) ™ Yeexp(W, /3T) (22)  the growth region is given by the standard expression

for the size of the boxl.=No, with the exponential term FRO=](R/(R) 23)
consistent with earlier estimatio& The inequality(22) im-
plies not-too-small undercooling. At still larger undercool- which is similar to the corresponding expression in 8d),
ings, however, particles start intensely coagulating with eaclut with j replaced by the actual time-dependent value, Eq.
other soon after the onset of nucleation, eventually making18).
Egs.(20), (21) inapplicable. In contrast to the exponentially decaying distribution be-
For the 48(x 480 system considered a required compro-low R, , this distribution is characterized by a long, near-
mise is reached a#S=0.1. The simulategh(t) curves are constant tail with a sharp cutoff. The length of the t&i(t),
shown in Fig. 7 for different values of the counting sRe can be obtained as the inverse of EP); its maximal value
together with the analytical approximation given by E20).  is determined by the coagulation effects. For sm&lia long
The value ofr=1748 in this equation was taken from ex- tail with Rj>R, is produced via the nucleation-growth
trapolation of equilibrium measuremer(see previous sec- mechanism. For larger undercoolings the description is re-
tion), and the value of ~0.0033 was used for all curves. stricted to smaller times with a much shorter t&|=R, ,
The correspondence is good, and such identification of anavhich is cutoff less abruptly, approximately as an exponen-
lytical and simulation results provides an accurate way otial. Finally, for very largedS, the distribution is not estab-
“measuring” the nucleation rate. lished beyondR, prior to the onset of coagulation, so that no
Application of the linearized Eq21) gives a comparable independent nucleation and growth occurs.
(slightly smallej value ofj. However, since this equation In Fig. 8 the nucleation-growth distributions given by
requires a notably larger time scale compared to(£9), it Egs.(18),(19),(23) are shown aR>2R, for a small under-
breaks down at smaller undercoolings due to onset of coagwooling of 6S=0.1. Forj the previously mentioned mea-
lation. On the other hand, Eq20) can be used at earlier sured value of 0.0033 was used, whilavas determined as
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FIG. 8. Distributions of clusters at different times f68=0.1. FIG. 9. Average waiting time to detect the first nucleus in a

Dashed and dotted lines: simulation data. Solid lines: #gsat ~ 60X 60 grid as a function 0_55_1- Dashed line corresponds to Egs.
R<2R, and Eqs(23),(18) atR>2R, with j estimated from Fig.  (19),(25). Solid line is the inverse of Eq12). The value atsS™*

7. The largest clusters at=10 000 are due to coagulation and are =20 is a lower estimation since not all runs resulted in nucleation.
not described by the nucleation solution.

=1/j4. Otherwise, if one assumes the validity of the large

R*./vm. The results are in refasonable agreement with simugme approximation, Eq(21), then the average waiting time
lation data, except for occasional large clusters at the lategt given by an expression

time which appear due to coagulation. For completeness of
the figure, aR<2R, , the steady-state distribution is shown.

The latter was obtained from E@L3) with a constant factor t~1j st Liags (25
adjusted to fit the observed distribution of small clusters at
R=2. which is well known in connection with experimental works,

The first indication of coagulation is the appearance ofs g, Ref. 36, and where now a properly evaluated size-
clusters with sizes up ta/2 larger than the length of the dependent time-lag is employed. Note that the two contribu-

nucleation tail due to binary collisions. This effect can betions tot in Eq. (25) are separable sinde, is proportional to
noticed even if otherwise the conditions for independentNO (the system siZewhile t,, is independent oN,
_ ag :

nucleation and growth are satisfied, as in Fig. 8. For larger ) . .

6S coagulation affects the bulk of the cluster distribution as In the S|m_ulat|onst was obte_uned as an average over 10
well. In particular, the role of the critical size becomes less' NS of the time to .detect the f|r§t hucleus (_)f a given Size
pronounced. For example, @6=0.25 the cluster distribu- A smaller 60<60 grid was used in order to increaseom-
tion will not resemble in any wayand at any timgthe L Pared totpg. The value ofR=10 was taken as a primary
shape of Fig. 8, being much closer to a power RWf with  choice, but values oR=7,12,15 were also considered.

q~3. The simulation results are shown in Fig. 9 together with
the conventional prediction, fif (an almost straight solid
V1. WAITING TIME TO DETECT THE FIRST NUCLEUS line). The temperature dependencejgfwas obtained from

Eqg. (12). Equation(25) is also showndashed ling with R
The approach of Sec. V is inapplicable to a small system=10 chosen to compute the time-léather values oR lead

where only a single nucleus can be formed. Such a nucleyg, an expected minor spread in the valuestpf Kinetic
will then grow to ﬂlz in the entire grid before any other cqrrections, indeed, become pronounced at larger values of
particle is formed:*** The typical nucleation time is given {he nycleation rate and substantially improve the correspon-
by 1/, while the growth time is of the orddr/v... This  gence with observations.
leads to an'estima}tion which is opposite to the one in Eq. At §ss=0.1 the time-lag corrections are minor, and the
(22) and which defines a “small” system. _ simulated waiting time is in reasonable agreement with the
In a small system nucleation becomes random. Mapping,yerse of the nucleation rate obtained from Fig. 7. An un-
to the previous description is achieved i treated not as a explained, not too smootdS dependence of should be
nucleation flux, but rather afs_probabi!ity flgan idea dug to noted. M(;st likely, this reflects geometrical effects due to
ﬁggﬁgﬂgc’;‘%\é?é I\,g?tiEéotli)rigilg){hﬂin;\%rfobfem a single (nonmonotonig deviations of the excess free energies.frpm
Eq. (6), but also can be partly due to not very good statistics.
w(t)=] exp—p), (24) It is worth noting, that in many studig¥ the time to
achieve a given value of the transformed akeéand not a
with p(t) still given by [ jdt which now can be both smaller given sizeR) is considered. As long as as multiple drop
or larger than 1. formation can be neglected, E€25) will remain valid for
In a steady-state case with the time-lag effects neglectedych definitions provided the siin t,((R) is replaced by
Eq. (24) is just a Poissonian distribution with the average LX/.
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VIl. TRANSFORMED VOLUME FRACTION
The two-dimensional version of the Kolmogorov-Avrami 200000

(KA) expression is given by

X()=1—exp — ——jp2t3 26)
EREEE

OF UP-SPINS

with X(t) being the relative area covered by the new phases 100000
This expression accounts for interaction between clustersg
allowing their overlap, and assuming that otherwise the2
growth rate is unchanged. In the Ising-type model consid-

ered, sharp corners created by overlapping clusters facilitats
flipping of near-by spins, which affects the growth. Never-
theless, one can expect that those effects are not crucial, ar 10000 20000 30000

being the only model which accounts for arbitrary strong TIME

interactions, the KA picture can be useful for evaluation of FIG. 10. Time dependence of the total number of up spins on a

Ist at. Iargehundercoollngs._ ze-ind d 480% 480 grid for different values of undercoolingS=0.1 (right),
Since the KA expression assumes a size-independent_ o ;5 (middle), and5S=0.2 (left). Solid lines: simulation data.

g_rowth rate,v_=vx, it also cannot account_ for_ related tran- pashed-dotted line: the original Avrami expression, Ezf) for
sient nucleation effects and for the contribution of near- ss—o 1 Dotted and dashed lines: E86) with a shifted time, Eq.

critical clusters. The neglect of these two effects can be rig2g) for §5=0.15 andsS=0.2, respectively.
orously justified for a high nucleation barrier. For smaller,

but still large barriers, transient nucleation effects can be VIII. DISCUSSION
included ift in Eq. (26) is replaced in accordance with

The nucleation description which is based on the ideas of
t W, droplet theory is asymptotic in nature, implying large values
t—>t—T|n{; T] (27)  of the reduced nucleation barriahl, /T, and of the critical

radiusR, . The corresponding nucleation rate is exponen-

The contribution of near-critical particles can be approxi-tially small, but the system is expected to be large enough to

mately accounted for by assuming nucleation of particle€nable formation of many nuclei before it gets covered by
with an initial sizeR, , while subsequent growth is still the new phase. In this approximation such aspects as prefac-
treated as size independéht-ormally, this is equivalent to tors in the expression for the nucleation rate become of sec-

replacingt in Eq. (26) in accordance with ondary importance. The dependence of those prefactors on
the undercoolingmagnetic field, is negligible compared to
t—t+ 7. (28)  that of the exponential term, exp{V, /T). The principal dif-

. .. . . . ference between various nucleation theories is thus reduced
Obviously, th'? IS npt a rigorous approach since parﬂcle; d?o the manner in which the work to form a critical nucleus
not start growing right fronR, , and the neglect of contri- ésic., interfacial energyyr) is defined. The classical approach

_butlons of smaller clusters which outnumber the critical one a§sumed macroscopibulk) values ofe. Other approaches
is also unclear. Nevertheless, the above procedure turns o .
see, e.g., Ref. 22, and references therdimclude mesos-

to be useful when describing the simulation data in strong| opic corrections to.
undercooled systems, before the contributions of small clus- pic R . .
It is a rare situation that all requirements of the nucleation

ters become so large that other effects are blurred. - Lo i
An important point is that the two effects, Eq&7) and description can be satisfied in simulations. Due to smaller
(28) act in opposite directions. Thus, in the region of inter-yallues OfW, /T, nonasymptqﬂc corrections becomg more
mportant here, and the time interval for pure nucleation and

mediate undercoolings these two effects partly compensaf%etowth is shortened by coagulation. In particular, transient

each other, and one can expect that the standard KA exprenucleation effects are to be included in the description even
sion, Eq.(26), often works beyond the region of its formal . : : : ptor
if evaluation of j, the steady-state nucleation rate, is the

applicability. sprimary goal of a study. These effects and hence the methods

From Fig. 10 it can be seen that the standard KA expre moloved for analvsis will be verv different depending on
sion works reasonably well for a moderate undercooling of MPoy ysIS Wi very di pending
Hwe size of the system.

6S=0.1. The nucleation rate agrees with the values obtaine ] ) ] _
from Fig. 7, as will be discussed in the next section. Adding !N @small system the nucleation rate is obtained from -
any of the aforementioned corrections worsens the corrd® average time to detect the first nucleus. In a strict
spondence. For largefS the contribution of small clusters asymptotic limitjg is just an inverse of. For smaller bar-
increases and the correcti@@8) is to be included in order to riers (larger undercoolingskinetic corrections become im-
approximate the simulated shape. Nucleation rates are egortant. In the case wheteis still larger than the time-lag
tracted from the modified KA curves by using the extrapo-due to transient nucleation and growth, one can ohjtaias
lated, rather than the actual growth rate (i.e., solid line

from Fig. 3. This choice looks consistent since the increase s (t__tlag)_l- (29)

in v,,, dashed line in Fig. 3, is due to coagulation which is

already taken into account in the KA interaction model. Otherwise, the general probability distribution for the
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-6 - . - are enhanced by coagulation effects, but such effects are al-
b ' ready taken into account when the KA interaction model is
o e o o employed. |
X from transformed area x An interesting point is that the steady-state nucleation rate
from equilibrium data -~ . . . .
m J ot Still can have a meaning at large undercoolings when the
sl S | steady-state nucleation regime is absent. In that gaisethe
a rate of nucleation of hypothetical, non-overlapping clusters,
S, and this definition is consistent with extrapolations of more

conventional data from lowefS. Otherwise,js should be
treated merely as a coefficient in the expression for the num-
Ev ber of particles at small time, Eq20), or as a factor in the
10r T exponent of the KA expression at larger times.

It was shown that a detailed thermodynamic and kinetic
study of clusters at equilibrium temperatuzero magnetic

LOG OF THE NUCLEATION RATE

5 10 15 20 field) allows one to predict the nucleation behavior in the

INVERSE REDUCED UNDERCOOLING metastable region at small undercoolings. Surprisingly, the

FIG. 11. Nucleation rate per spin/N, obtained by different MOSt straightforward exponential approximation of the equi-
methods. Diamonds: from numbers of nucleated particles(Z®,  librium distribution function also turns the most accurate

as in Fig. 7[errorbars are obtained by using the linearized@t)];  (See Fig. 1. This contrasts with the classical and many near-

squares: from the average waiting time corrected by the time-lagtlassical descriptions which have additional power-law fac-

Eq. (29); crosses: from Avrami-type expressions, as in Fig. 10.  tors in the pre-exponential. In the undercooled region the
predictive abilities are limited, however, to smatb — see

waiting times, Eq(24), can be used. An artificial reduction th? dotted 'Ilne in Fig. 11. At larger undercgolmgs the nuqle-
ation rate increases slower than the equilibrium prediction.

of the system siz¢as going from the 480480 to 60<60 At present, the reason for this is unclear. This could be either

grid) can be useful to increasecompared td,q Which is 3 single-nucleus thermodynamic effe@.g., small nuclei
grid-size independent, but has its limitations due to potentiastart “feeling” the hexagonal structure of the gricor an
contribution of boundary nucleatiof**In the present study effect due to cluster-cluster interactions. The aforementioned
the waiting time approach permitted the examination of thepre-exponential factor could also be important, although it is
region 0.05<6S<0.1 — see Fig. 11. not suggested by Fig. 1.

For anintermediatesystem(larger §S) one can directly Coagulation effects cannot be predicted quantitatively
evaluatej; from the observed number of nucleft) by ap-  from equilibrium measurements, but they are clearly ob-
plying Eq. (20), as in Fig. 7. Results of this approach are Served visually, and reveal their presence by producing clus-
shown in Fig. 11 by diamonds. With increased undercoolingers which are too large for pure nucleation-growth mecha-
the near-linear interval in the(t) dependence which repre- NiSms — see Fig. 8. Coagulation effects increase growth
sents steady-state nucleatisee Fig. 7 shortens due to co- rates for flat and curved mterfaf:es; the latter l_Jecqmes obvi-
agulation between clusters. Here consideration of transierfUS once those effects are “switched off,” as in Figs. 5 and
nucleation effects becomes especially helpful since they af: A quantitative analytical descr|pt|or_1 of such effects re-
low one to go to smaller times when coagulation is still MaIns, however, a task for future studies.
unimportant. In the study, data for the transformed area less

than 10% were used in order to evalupie The values ofr IX. CONCLUSION
in Eq. (20) were taken from near-equilibrium kinetics ] o
«(5S) 2 (see Sec. IY. For largersS, however, the validity In the present study nucleation and growth kinetics in an

of this extrapolation is unclear, and corresponding data ir{sri]ng'%pfi System ?]nda hexagonallgriddhave been r?nalylzed.
Fig. 11 for §5=0.15 and 0.2 should be treated as estima—T]c trﬁe ' elzrert1_t mettofs were erlnrz_oyed io (;:xtractt et\_/a Lljes
tions. Rather different values gf; for these undercoolings ot the nucleation rate from simuiation data tor, reSpectively,

- . ) . °~ small, intermediate, and large undercooling®magnetic
;Zr;?;?(?nzsag; :Il%r,}zlt?rgeiv%tﬁak;;egqbér)smg the straight line fields and were compared to each other in overlapping re-

h | . d - gions. Transient nucleation and growth effects become im-
The Kolmogorov-AvramiKA) type description seems to portant with increased undercooling, but otherwise the

represent the only way to account for strong interactions begygplet-model based nucleation picture remains consistent,
tween clusters due to their overlap, and thus to study systems;pecially its kinetic part. Up to moderate undercoolings the
with nonsmall transformed areas. A6=0.1 a straightfor-  ycleation-growth behavior can be predicted quantitatively
ward application of the KA expression gives a valuejQf  from thermodynamic and kinetic equilibrium “measure-
which is consistent with direct nucleation measurements, segents.”

Fig. 11. For highersS a minor adjustmentshift of time) in At larger undercoolings deviations from the droplet-
the KA expression is usually sufficient in order to fit the datamodel predictions were observésimaller nucleation rat@s
(Fig. 10, although Fig. 11 suggests that agreement witheven though the critical cluster still contained several tens of
nucleation rates obtained from the number of nuclei is not aspins. Coagulation effects also become important, and they
good. Note that the extrapolated rather than the physicatan be highlighted by an artificial modification of the spin
growth rates are to be used in the KA expression. The latteflip kinetics on the postnucleation stage.



3588

APPENDIX: DISCRETE VERSION OF THE
NUCLEATION EQUATION

The original model which was discussed by Farkas
Becker and Ddng (BD) (Ref. 17 was formulated in terms
of a discrete variable= 7R?, the number of monomers in a
cluster. The kinetic equation for the distribution function,
f,=f(R)dR/dn, has the form

(A1)

Here B,~D(R)(dn/dR)? is the gain coefficient and the
equilibrium distributionN,, is given byNgexp[—W(R)/T}, in
accord with Eq.(8).

In the leading asymptotic approximatidiarge W, /T)

ifBD:

a "

fos fa

o =B N[t
Jn~7In+1y In ,Bnlnl(Nn_1 N,

the BD equation gives a steady-state nucleation rate which is

identical to Eq.(12), and a distribution which coincides with
Eq. (13) except for a different (R), as discussed below. The
functional form of the time-dependent nucleation flux, Eq.
(18), also remains unchangét>> A modification is required
only for the growth rate. In the general case for a smgith
the discrete version of E9) takes the forrf?*°

Unzlgn{l_ quWr;/T)}a

where the prime indicates the derivative with respech,to
andv,=v(R)dn/dR. After specification of the parameters,
one obtains

(A2)

BD,/ P\ —
v(R) TX0S

{1-exd x6S(R, /R—-1)]}, (A3)

where the superscript indicates the “Beckerridg” model.
For smally &S this expression coincides with EGLO). Con-
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sistency of the treatment thus requires neglecting all terms
which are higher order idS when employing the continuous
description based on E®).

' Modification of the growth rate leads to the following

changes in the results discussed in the main part of the paper.
At equilibrium, Eq.(A3) gives

(%) el

In contrast to its continuous counterpart this expression can-
not be integrated in elementary functions. In the present case
this is hardly required, however, since for the values of
o/T<0.5 and the minimal value dR>3, the difference is
unobservable within the accuracy of simulations.

For the velocity of a flat interface one has

R

T

(A4)
eq

2
*

vEP(69)=
.

(A5)

T
eq(—r[exp( 59 —1].

Strictly speaking, the term- 1 in the square brackets should
be replaced by eXpy—1)dS}, but the difference is undetect-
able. Equation/A5) which numerically is very close to Eq.
(16), was used for comparison with simulation data in Fig. 3.

The functional form of Eq(20) for the number of nucle-
ated particles also holds in the BD case. Modification of the
growth rate somewhat complicates the incubation time,
and thus the time-laf The main difference comes from
large sizes; replacing the termR/R, in Eq. (19) by
R/vBP() makes this expression approximately applicable
for the BD case as well. A focused study of the differences
between the discrete and continuous descriptions in the time-
lag problem is contained, e.g., in Ref. 41.
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