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Transient solution of the Kramers problem in the weak noise limit

Vitaly A. Shneidman
Department of Materials Science and Engineering, The University of Arizona, Tucson, Arizona 85721

~Received 3 June 1997!

The one-dimensional escape problem for both overdamped and underdamped cases is treated using a com-
bination of matched asymptotic and Laplace transformation techniques. It is shown that the shape of transient
curves for the probability flux at the top of the barrier is insensitive to the specific shape of the potential, but
is determined only by the ratio of the characteristic time scales at the points of stable and unstable equilibria.
For the overdamped case this results in a relatively small number of possible types of transient behavior for
various potentials~examples of quartic, slanted sinusoidal, cubic, and nonanalytic potentials are considered!. In
the underdamped situation the transient curve is identical for any shape of potential.@S1063-651X~97!06411-8#

PACS number~s!: 05.40.1j, 82.20.Mj
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I. INTRODUCTION

In his celebrated paper@1# Kramers considered Brownia
diffusion of a classical particle in a nonuniform field of forc
described by a metastable potentialW(x), x being the ‘‘re-
action coordinate.’’ The Kramers problem~KP! can be cast
in terms of a Langevin equation

ẍ1g ẋ1W8~x!5z~ t !, ^z~ t !z~ t8!&5~2g/b!d~ t2t8!,
~1!

with g describing dissipation andz the random Gaussia
force; b21[kBT is the thermal noise, withkB being the
Boltzmann constant. Although originally intended to d
scribe chemical reactions, the problem turned to a m
broader applicability due to the universality of the activati
decay mechanisms. As an example, one could mention
nucleation problem, which could be treated in the spirit
the Kramers approach@2#; diverse, more recent develop
ments can be found in Refs.@3–5#.

In the problems of activation decay, typically of interest
the mean exit timetK for a particle to escape the metastab
well or, equivalently, the quasi-steady-state probability fl
over the barrierI K;1/tK . This means that one is discussin
time scales when the transformation is already bound
wards completion, and in a large system the number of pr
uct molecules is comparable to the one that originally
tered the reaction. On the other hand, a different question
be asked: How quickly is the fluxI K established? The latte
can be of interest when minor amounts of the product
important and/or can be detected experimentally and will
discussed in the present work.

Since in a general case it is impossible to treat exactly
~1! or its counterpart, the two-dimensional Fokker-Plan
~Kramers! equation, attention is being turned to asympto
methods for weak thermal noise. Such methods are e
cially effective in the strong damping limit when Eq.~1! can
be mapped to a one-dimensional Fokker-Planck~Smolu-
chowski! equation@6–8#. Specifically, for equations describ
ing a forced diffusion in a nonuniform potential one cou
mention the WKB@9# or path-integral approaches@10#, op-
erator methods@11#, matched asymptotic technique@12#, etc.
The weak noise ideas also turned out to be very effective
561063-651X/97/56~5!/5257~8!/$10.00
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the escape problems in more complicated situations wh
additional dimensions are added@5,13–15#, the systems
lacks detailed balance@16,17#, or the potentialW(x) fluctu-
ates@18# or changes with time periodically@19# or monotoni-
cally @15,20#, etc. ~The field is too broad and only represe
tative references are given.! For the Kramers problem with
arbitrary damping the weak noise~singular perturbation!
methods proved very effective too@21–23#. Nevertheless,
even for weak noise the general problem is not yet fu
solved and there does not seem to be a straightforward
to treat analytically the two-dimensional Fokker-Plan
counterpart of Eq.~1!. Otherwise, numerically oriented
methods@24,25# are being introduced and damping is ofte
imitated by a contact with an oscillator bath@5#. Thus, in the
present work the limits of large and smallg will be treated
separately for the transient case; the crossover prob
which is much more elaborate even in the mean first-pass
time and related formulations~see, e.g., Refs.@5, 26–28#!,
will not be discussed.

In the treatment of the corresponding Fokker-Plan
equations we will mostly rely on a combination of match
asymptotic and Laplace transformation techniques that
introduced in a simpler~nucleation! context in Ref.@29# ~see
also Refs.@12, 30#!. Section II deals with the overdampe
case and Sec. III with the underdamped case. In Sec
several specific examples of the potentialW(x) will be dis-
cussed, although our main intent is the general treatmen
well as the exploration of the ‘‘universality’’@weak sensitiv-
ity to W(x)# that arises in the weak noise limit. The nucl
ation problem also will be discussed as an example in so
what more detail in Sec. IV; it will be shown that despi
certain technical differences, this problem exhibits a ve
similar transient behavior to the Kramers escape probl
albeit with a nonanalytic potential. Experimental conditio
where the transient effects in the KP may be of importan
also will be clarified in the course of the comparison with t
nucleation problem. A summary of our main findings
given in Sec. V.

II. OVERDAMPED CASE

Let vs andv* denote the stable and unstable frequenc
i.e.,
5257 © 1997 The American Physical Society
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vs,*
2 56

d2W

dx2 U
x5xs ,x

*

. ~2!

Herexs andx* .xs are, respectively, the stable and unsta
points of the potentialW(x). In the overdamped case wit
g@vs ,v* , Eq.~1! can be reduced to a Smoluchowski equ
tion for the probability densityP(x,t) ~see, e.g., Refs.@31–
33# and references therein!,

]P

]t
52

] j

]x
, j 52D~x!

]P

]x
1v~x!P. ~3!

Here

v~x!52bD~x!dW/dx ~4!

is the deterministic rate, withD(x) being the diffusion coef-
ficient. For the KP the latter is constant,D51/bg, but we
indicate the possiblex dependence for potential generaliz
tions.

Formally, one can introduce a~quasi!equilibrium density

Peq~x!5
1

DsAp
exp$2b@W~x!2W~xs!#%,

Ds[vs
21A2/b, ~5!

which corresponds to a zero fluxj in Eq. ~3!. The reduced
densityw(x,t)[P(x,t)/Peq obeys an equation

]w

]t
5

]

]x
D~x!

]w

]x
1v~x!

]w

]x
. ~6!

In the ~quasi-!steady-state case Eq.~6! can be solved ex-
actly. More instructive, however, is the singular perturbat
solution. The ‘‘outer solution’’ isw(x)51 at x,x* . In the
vicinity of x* there is a boundary layer with a widthD*
5v*

A2/b; the stretched~inner! variable is given byz*
5(x2x* )/D* . For a natural boundary condition~absorbing
boundary placed atz*→`! the inner solution isw(z* )
5 1

2 erfc(z* ). The Kramers flux is thus given by

I K5
D~x* !

D*
Ap

Peq~x* !5
vsv*
2gp

exp~2bW* !, ~7!

with W* [W(x* )2W(xs). This is a well-known result; the
corresponding flux would be doubled if an absorbing bou
ary were placed directly at the top of the barrier; otherwi
the description remains unchanged. Note that it is the p
ence of an absorbing boundary that selects the steady-
distribution with a nonzero flux~see also Ref.@5#!.

We now proceed to our main concern: the evaluation
the reduced transient fluxj * (t)/I K .

A. Laplace transform

Let us switch to

V~x,p!5E
0

`

dt e2ptw~x,t !,
e

-

n

-
,
s-
ate

f

which is the Laplace transform ofw(x,t). The function
V(x,p) obeys anordinary differential equation

pV2w~x,0!5
d

dx
D~x!

dV

dx
1v~x!

dV

dx
. ~8!

In the limit of weak noise,b→`, this equation can be
treated using the standard matched asymptotic techn
~see, e.g., Ref.@34# for a general introduction!. A d-function
initial condition forw(x,0) will be assumed, i.e., the particl
is placed at the bottom of the metastable well att50.

In the vicinity of the stable point we switch to a stretch
variable zs5(x2xs)/Ds . Together with the normalization
condition *2`

` V(z,p)Peq(z)dz51/p, this leads to the inner
solution

V~zs ,p!5tsApG~ms!exp~zs
2!2ni n erfc~ uzsu!. ~9!

Here G denotes the gamma function andi nerfc is the re-
peated error integral@35#. The indexn is given byn52ms

21 with ms5pts andts
21522vx8 at x5xs ~so that for the

KP one hasts5g/2vs
2!.

The outer solution atxs,x,x* is given by

V~x,p!}expS 2pE dx/v~x! D . ~10!

The proportionality coefficient can be determined fro
matching the asymptote of Eq.~10! for x→0 with the one of
Eq. ~9! for zs→`.

Similarly, near the unstable pointx* , one can switch to a
stretched variablez* . The solutions of the resulting equatio
that decays asz*→` can be expressed through a simil
repeated error integrali nerfc(z* ), although with a different
indexn. The proportionality coefficient can be deduced fro
matching with Eq.~10!. The Laplace transform of the flux i
further obtained asI (x,p)52DPeqdV/dx. At x5x* one
ends up with the expression

I * ~p!5I Kp
t2

a
G~m!G~m/a!exp~2pti !. ~11!

Here, in order to symmetrize the notations with respect toxs
andx* we introduced

t5max~ts ,t* !, a5t/min~ts ,t* !>1, ~12!

with t
*
2152vx8 at x5x* andm5pt. The parametert i , the

‘‘incubation time,’’ is defined as

t i5E
xs1Ds

x
*

2D
* dx

v~x!
52ts ln

x* 2xs

Ds
12t* ln

x* 2xs

D*
1tC,

~13a!

C5
1

t E
xs

x
* dxH 1

v~x!
2

1

v8~xs!~x2xs!
2

1

v8~x* !~x2x* !J .

~13b!

Here only the constantC is sensitive to the specific shape
the potentialW(x).
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56 5259TRANSIENT SOLUTION OF THE KRAMERS PROBLEM . . .
B. Time dependence of the flux

Equation~11! does not satisfy the formal requirements f
a Laplace transform due to a rapid growth of theG functions
for m→`. This is due to the asymptotic treatment of t
problem: In the application of the matched asymptotic te
nique it is implicitly assumed that the dimensionless Lapla
index m is finite. Thus one does not expect the resulti
transient flux to be accurate for very small times. Nevert
less, the error is present only during an initial time interv
which is asymptotically small compared to the incubati
time t i . Since the flux during this interval is negligibly sma
compared toI K , the error remains practically unobservab
This situation is typical for asymptotic methods, which oft
do not distinguish between exact and asymptotic zeros~see,
e.g., the discussion of the WKB approach in Ref.@36#!.

Since Eq.~11! is accurate in anyfinite part of the complex
p plane, we apply the following expression to evaluate
time dependence of the flux@29,30#:

j * ~ t !5( 8 ResI * ~p!ept. ~14!

The prime indicates that only residues at finitep are to be
considered. The summation over finite residues of theG
function leads to a double-exponential time dependence@29#

( 8 ResG~m!emu5exp$2exp~2u!%[f0~u!, ~15!

with

u[~ t2t i !/t. ~16!

When severalG functions are present in the Laplace tran
form, the convolution theorem can be applied~although cer-
tain caution is required due to the asymptotic nature of
problem@12#!. In application to Eq.~11! one needs a convo
lution of two double-exponential functions. After som
straightforward transformations this leads to

j * ~ t !5I KE
0

`

dy expH 2y2S e2u

y D aJ , ~17!

which is the main result of this part of the study. Note
asymptotic rather than an exact zero att50, which corre-
sponds to large negativeu. Otherwise, Eq.~17! is expected
to be asymptotically accurate for the entire transient reg
when j * (t) changes from negligibly small values toI K .
Again, one can note the insensitivity of the transient expr
sion to the specifics of the potentialW(x) that enters the
result only through the parametera, which is the ratio of
corresponding frequencies near the equilibrium points.

The probability for a particle to exit the well

PB5E
x
*

`

dx P~x,t !

is given by integration of Eq.~17! over time. One has with
asymptotic accuracy
-
e

-
,

.

e

-

e

n

s-

PB~ t !5tI K

1

a E
0

`

dy e2yE1H S e2u

y D aJ , ~18!

whereE1 is the first exponential integral. At large timesu
@1 one has the correction to the Kramers-type express
PB

K;tI K :

PB5I K$t2t ind1tO~e2u!%. ~19!

Here

t ind5 lim
p→0

H 1

p
2

I * ~p!

I K
J 5t i1CtS 11

1

a D ~20!

is the ‘‘induction time’’ ~in nucleation terminology! with C
50.5772... being Euler’s constant. Obviously, the induct
time can be deduced directly from the large-time asympt
of Eq. ~18!, which leads to the same result as given by E
~20! and testifies to the correctness of the inversion of
Laplace transform. Fora→` the functional form of Eqs.
~17!, ~18!, and~20! coincides with the corresponding nucle
ation expressions@29,37#. This correspondence is rooted
certain similarities between the nucleation and the KP a
will be examined in Sec. IV.

III. UNDERDAMPED LIMIT

In the limit g!vs ,v* the slow variable for a Brownian
particle described by Eq.~1! is the actionJ or, equivalently,
the total energyE(J). Biased diffusion along theJ axis can
be described by the equation@1# ~see also the review@5# and
references therein!

]

]t
P~J,t !5g

]

]J H J

v S b21
]P

]J
1vPD J . ~21!

Herev, the angular frequency, is given bydE/dJ; the factor
2p ~see, e.g.,@5#! can be included in the definition of th
action,J. For smallJ→0 one hasv→vs . For largeJ→J*
with J* corresponding to the value on the separatrix,v goes
to zero as (p/&)v* $2 ln(J*2J)%21. Equation~21! is appli-
cable forv@g, which is satisfied unlessJ is exponentially
close toJ* . Note, however, that the deterministic rate of t
decay of the actionv(J) in the leading order inb has no
singularities asJ→J* and, in contrast to the overdampe
case, remains finite near the exit point~see below!. The latter
belittles the role of the weak~logarithmic! singularity in 1/v,
at least for the time scales considered. Divergence ofv
near J5J* , rather, serves as the remainder of the limit
applicability of Eq.~21!.

Similarly to the overdamped case, one can introduc
formal equilibrium probability density

Peq~J!5bvs exp$2bE~J!% ~22!

and rewrite Eq.~21! in terms ofw(J,t)5P(J,t)/Peq as

]w

]t
5

]

]J
D~J!

]w

]J
1v~J!

]w

]J
. ~23!
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5260 56VITALY A. SHNEIDMAN
This equation may look identical to Eq.~6! with x replaced
by J, but the size dependence of the coefficients is n
different:

D~J!5
gJ

vb
, v~J!52gJ. ~24!

An absorbing boundary is assumed atJ5J* . Due to
logarithmic divergence ofv21, the corresponding boundar
layer has a rather complicated structure. A detailed stud
this layer may be further hindered by the fact that Eq.~21!
loses its applicability in the immediate vicinity ofJ* , as
discussed above. To bypass this boundary layer in
steady-state situation one can either consider the exact
tion of Eq. ~23! or shift the absorbing boundary to someJ
,J* and take the limitJ→J* after the flux is evaluated
The latter represents the most natural approach in view of
time-dependent generalizations. In the steady-state ca
leads to the well-known result of Kramers for the und
damped flux

I K
under5gJ* Peq~J* !. ~25!

Again, the problem is an evaluation of the transient behav
j * (t).

A. Laplace transform

Let us temporarily switch to a dimensionless ‘‘time’’gt.
Similarly to the overdamped case, one can introduce
Laplace transformV(J,p) of the reduced probability densit
w(J,t). The functionV(J,p) obeys an equation similar t
Eq. ~8!, with the coefficients defined in Eq.~24!. In the vi-
cinity of J50 this function obeys the equation

zVzz9 1~12z!Vz82pV52w~z,0!, ~26!

with z5Jbvs being the inner variable.
The homogeneous part of Eq.~26! has two linearly inde-

pendent solutions: Kummer’s functionsM (p,1,z) and
U(p,1,z), with a WronskianW$M ,U%52ez/zG(p) @35#.
Taking into account the behavior of Kummer’s functions
z→0 andz→`, one can write the solution to Eq.~26! as

V~z,p!5G~p!H U~p,1,z!E
0

z

dy M~p,1,y!e2yw~y,0!

1M ~p,1,z!E
z

`

dy U~p,1,y!e2yw~y,0!J . ~27!

This expression can be inverted, giving a Green’s function
Eq. ~21! nearJ50 ~see the Appendix!. It is easier to post-
pone the inversion, however, until the Laplace transform
the flux atJ5J* is obtained.

The outer solution is similar to Eq.~10! with v(J) from
Eq. ~24!. This givesV(J,p)}J2p. The proportionality coef-
ficient is obtained from matching with Eq.~27!. For a d-
function initial distribution one hasV(z,p)→z2pG(p) for
z→`, so that the outer solution is given by

V~J,p!5~Jbvs!
2pG~p!. ~28!
w

of

e
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e
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-

r

a
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f

The above expression does not satisfy the right-hand bou
ary condition where an absorbing boundary is assumed. P
ing this boundary at anyJ,J* , however, leads only to a
minor modification of the nonsingular equation~28! inside a
simple boundary layer. One can show in a general situa
@12# that the modified solution in the vicinity of the bounda
leads to a fluxI 5uvuPeqV, with V being a ‘‘free-boundary’’
outer solution, similar to Eq.~28!. Thus one obtains

I ~J,p!5gJV~J,p!Peq~J! ~29!

for the flux near the absorbing boundary placed at arbitr
J. An important point is that this expression does not exh
any singularities asJ→J* . Thus the boundary can b
‘‘pushed’’ towardsJ* and Eq.~29! can be used to evaluat
the Laplace transform of the flux. Otherwise, an elabor
investigation of the aforementioned logarithmic bounda
layer nearJ* would be required.~Anyway, one can expec
that the latter will affect the Laplace transform only at ve
largep;bE* , which correspond to times so small that th
flux is yet unobservable on the scale ofI K .! From Eqs.~25!
and ~29! one obtains forI * (p)[I (J* ,p)

I * ~p!5I K
under~J* bvs!

2pG~p!. ~30!

B. Time dependence of the flux

Applying to I * (p), the asymptotic inversion techniqu
described in Sec. II, one ends up with the transient flux

j * ~ t !5( 8 ResI * ~p!ept5I K
underf0~u!, u[g~ t2t i !,

~31!

with f0(u) being the same double-exponential function
defined by Eq.~15! and

t i5t ln~bJ* vs!, t[g21. ~32!

Formally, this expression follows from Eq.~17! in the limit
a→` ~note, however, a different definition oft!. In the
underdamped case transient behavior originates solely f
equilibration near the stable point, which gives a lead
term t ln(bvs) in the incubation time. At higher energie
equilibration is fast on the scale oft i . This leads only to a
finite shift ~of the order oft! in the incubation time and doe
not alter the double-exponential shape of the transient cu
In principle, similar effects can be observed in the ov
damped case as well if the deterministic ratev(x) does not
go to zero at one of the extrema ofW(x). This will be
discussed in the next section.

IV. EXAMPLES

We are going to consider several frequently discus
shapes of the potentialW(x) for the overdamped KP. A spe
cific shape ofW(x) affects the general result, Eqs.~17! and
~18!, via the the parametera, which describes the asymmetr
of kinetics near the stable and unstable equilibrium poin
respectively. The relation to the nucleation problem also w
be examined, which might provide additional analytical a
experimental insight into the KP. On the other hand, at t
point one already can add little to the underdamped K
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56 5261TRANSIENT SOLUTION OF THE KRAMERS PROBLEM . . .
which, according to Eq.~31!, is completely insensitive to the
shape ofW(x), and this problem will be invoked only occa
sionally.

A. Analytic W„x…

Consider the escape problem in a quartic bistable po
tial

W~x!5W* $22~x/xs!
21~x/xs!

4% ~33!

with stable points atx56xs and a barrier atx5x* 50. This
potential is often discussed in connection with the Ginzbu
Landau–type description of phase separation. Transient
is now given by Eq.~17! with a52. The integral cannot be
evaluated in a closed form, and the results of numerical
tegration are shown in Fig. 1 together with an element
approximation based on a large-a expansion.

The cubic potential

W~x!5W* $3~x/x* !222~x/x* !3% ~34!

often arises in connection with the formation of nuclei.
such cases the cubic and quadratic terms correspond to
ume and surface contributions, respectively. The parameta
equals 1, which allows one to express the integrals in E
~17! and~18! through modified Bessel functionsK1 andK0 ;

FIG. 1. Transient overdamped fluxj (t)/I K for various potentials
W(x) as a function of dimensionless shifted timeu5(t2t i)/t.
Analytical dependences used to plot the curves are listed in Tab
The dotted line shows the ‘‘large-a’’ approximation for the quartic
potential~37! with a52. The underdamped flux has the same sh
as the nonanalytic curve~although with different parameterst and
t i! and is given by Eq.~31!.
n-

-
ux

-
y

ol-

s.

see Table I. The ‘‘real-life’’ nucleation problem, howeve
has a different transient behavior due to the size depend
of D(x) in Eq. ~3! and will be discussed separately.

The slanted sinusoidal~‘‘washboard’’! potential

W~x!5 1
2 W* $sinx* 2x* cosx* %21~sinx2x cosx* !,

x* ,p/2, ~35!

is encountered in problems of ionic conductivity or in co
nection with Josephson junctions. This potential has
same value ofa51 as the cubic potential. Thus it is de
scribed by the same transient curve, which turns indep
dently either of the barrierW* or of the ‘‘driving force’’ x* .
The latter affects only the constantC in the expression for
the incubation time; see Table I.~Naturally, we limit the
discussion to a moderate driving force withx* ,p/2 so that
metastable states still exist.!

B. Nonanalytic W„x… and the limit a˜`

Consider a situation where the ratev(x) does not go to
zero ~has a discontinuity of first or second order! at one of
the extreme ofW(x). For a constant diffusion coefficient thi
is possible for a potential that is nonanalytic either nearxs or
nearx* . Such a behavior arises, say, for a piecewise lin
potential where the transient problem can be solved exa
@38#. Formally, nonanalyticW(x) also brings the situation
closer to the underdamped KP as well as to the nuclea
problem~see below!.

The outer solution given by Eq.~10!, which is not af-
fected~up to a factor! by the equilibrium points, is still valid
for a nonanalyticW(x). In the latter case, however, this so
lution does not exhibit a singularity at a point withv(x)
Þ0, which simplifies the problem. In particular, there r
mains only a single time scalet and the constantC in the
expression for the incubation time is now given by

C5
1

t E
xs

x
* dxH 1

v~x!
2

1

v8~xi !~x2xi !J . ~36!

Herexi is the equilibrium point wherev(x) does go to zero.
The asymmetry parametera goes to infinity. The transien
flux has a double-exponential dependence of type~31! ~note,
however, differentt and I K! and is shown in Fig. 1. Again
we note the universality ofj * (t),PB(t) for any particular
shape of nonanalyticW(x) as long as the constantC defined
by Eq. ~36! is finite.

Since the nonanalytic situation should follow from th
general equation~17! in the limit a→`, one could wish to
examine the general result for largea. Integrating Eq.~17!

I.

e

TABLE I. Typical parameters and shapes of the solution withu5(t2t i)/t.

Potential v(x) a C j* (t)/I K PB(t)/tI K

general Eq.~4! Eq. ~12! Eq. ~13b!
biquadratic, Eq.~33! x(x22xs

2) 2 2 ln 2 Eq.~17! Eq. ~18!

cubic, Eq.~34! x(x2x* ) 1 0
slanted sinusoidal, Eq.~35! cosx*2cosx 1 4 ln(x* /sinx* ) 2e2u/2K1(e2u/2) 2K0(e2u/2)

nonanalytic discontinuous atxs or x* ` Eq. ~36! exp$2e2u% E1(e2u)
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5262 56VITALY A. SHNEIDMAN
by parts, switching to a new integration variablew
5@y exp(u)#2a, and expanding the resulting integral in pow
ers of 1/a, one obtains

j * ~ t !5I Kf0~u!F12
e2u

a
C2

e2u~12e2u!

2a2

3~C21p2/6!1••• G . ~37!

Here, again, u is defined by Eq. ~16!, f0(u)
5exp[2exp(2u)], and C is Euler’s constant. Similarly, one
has for the escape probability

PB~ t !5tI K$E1~e2u!2f0~u!0.577/a1f08~u!0.989/a2

1•••%, ~38!

with f08(u)5exp@2u2exp(2u)#. As seen from Fig. 1, the
expansion works quite well even for a moderatea52; a
certain loss of accuracy for negativeu comes from the limi-
tationa@max(1,e2u), which is required in order to validat
Eq. ~37!.

Comparing various curves shown in Fig. 1 for differe
values of the asymmetry parametera, one can note their
relatively small difference from each other. This ‘‘weak
universality should be kept in mind when analyzing expe
mental~and possibly even numerical! data. In such situations
it might be hard to distinguish between different depe
dences even for a minor amount of inevitable scatter.

Finally, since the functional form of the transient solutio
is determined exclusively by the equilibrium points, the
sults may hold even if the Fokker-Planck description is
valid in the intermediate regionxs,x,x* . This can happen
when the discrete version of Eq.~3! is to be considered
@29,30,39#. The functions listed in Table I will remain un
changed and only the constantsC will be altered in such
cases.

An interesting point is that transition from analytical
nonanalytical W(x) goes more smoothly in the time
dependent case compared to the steady-state one. The
obviously, does not allow for a limiting transitionv*→` in
Eq. ~7! and an alternative treatment is required for a cusp
shaped potential@1,5#. In the time-dependent case, on t
other hand, one deals already with a reduced fluxj * (t)/I K ,
which tends to unity ast→` for any potential, so that tran
sition to nonanalyticW(x) is not so dramatic. Similarly, for
the underdamped case, one does not have to expect
modification of the prefactor in Eq.~25!, which is observed
for certain exotic barriers@5#, will necessarily affect the tran
sient behavior, Eq.~31!, at least for the time scales consi
ered.

C. Nucleation and the possibility of experimental observation

The classical picture of nucleation@2,40# is a random
walk of a nucleus along the axis of its sizes due to gain
loss of monomers. The loss and gain kinetic coefficients
related to the minimal workW(x) required to form a nucleus
of a given radiusx by the detailed balance condition. Th
work has a form given by Eq.~34!. In the simplest case@2#
the nucleation problem can be described by a o
t

-

-

-
-

tter,

-

hat

d
re

-

dimensional Fokker-Planck equation of type~3!, although
with an x-dependent diffusion coefficient; the probabili
density is usually replaced by a distribution functionf (x,t)
of nuclei over their sizes. Apart from different normalizatio
similarities to the KP are obvious and the activation flux ov
the barrier determines the ‘‘nucleation rate.’’

A technical difference in the nucleation problem com
from the left-hand boundary condition: It is assumed tha
the smallest~molecular! size, the distributionf (x,t) is deter-
mined by the amount of monomersf 1 . Generally speaking
the nucleation process is nonlinear due to thef 1 dependence
of x* andW* @41#. However, variation in these paramete
can be neglected during an exponentially long time interv
as long as the depletion of monomers by growing nucle
minor. During that interval, which is much larger than th
transient period, there is a strong similarity to the KP.
particular, the~quasi-!steady-state nucleation flux is given b
@2#

I n5D* v*
Ab/2p f eq~x* !, ~39!

in complete analogy with the Kramers expression. In
nucleation normalization the escape probabilityPB(t) corre-
sponds to the number of nucleated particlesN(t) and is
given by an equation that is functionally identical to the fi
term in Eq.~38! @37#.

Another difference in the nucleation and the Krame
problems is that the deterministic ratev(x) in the nucleation
case must satisfy the requirement*dx/v(x)→` for x→`
since a nucleus cannot grow to an infinite size during a fin
time interval. With a cubic shape ofW(x) this is achieved
due to anx-dependent diffusion coefficient in Eq.~4!. A
typical dependence isD(x)}x2n, with the power indexn
>1 determined by the type of mass exchange between
nucleus and the surrounding. Note thatv(x) is nonzero at
x50.

Finally, a difference from the KP comes from the fact th
in the nucleation context one is usually interested in
overcritical flux atx.x* , where all the measurements a
performed@42,43#. The solution technique remains basica
the same as described in Sec. II, but one has to match
right-hand asymptote of the inner solution~9! with the cor-
responding outer solution atx.x* . The result@29#, for-
mally, is given by the same double-exponential function
for the nonanalytic KP@the first term in Eq.~37!#, although
with a differentt and a with size-dependent incubation tim
t i(x). The values oft i(x) for different types of diffusion
coefficientD(x) are listed in Ref.@37#.

To summarize, the nucleation problems bears strong s
larities to the KP with a nonanalytic potential. This is due
rapid decay of small nuclei, which leads to a zero relaxat
time ts or, equivalently, to an infinite asymmetry parame
a. The nucleation situation also shows that certain c
should be taken for stiff potentialsW(x), which are often
discussed in the KP. It is unphysical for a particle to rea
infinity ~or to come from infinity! during a finite time inter-
val, in which case one has to be ready for mathemat
complications, up to the loss of uniqueness of the solutio

Nucleation provides an example of experimental obser
tion of transient effects in activation decay@42,43#. With all
the specifics of nucleation in glasses considered in the af
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mentioned works, one could mention some general feat
that might be useful for the KP as well. In the studies
@42,43# the number of nucleiN was much smaller than th
number of monomersf 1 in the system under investigation
but N was still be large enough in order to be detect
Further, a relatively short intrusion into the region of lo
W* was performed through temporal lowering of tempe
ture, while the nuclei where actually counted at a later st
when nucleation became impossible. In terms of the K
observation of the transient behavior would require the
tection of small escape probabilitiesPB(t)!1. Using the
nucleation analogy, one can imagine the following situati
A large number of moleculesf 1 enters the reaction, but on
is able to detect already individual~or minor amounts of!
product molecules. In cases wheref 1 is larger than the
Kramers exponential exp(bW* ) ~say f 1 is of the order of the
Avogadro number! transient effects may have direct expe
mental implications. More specifically, a short pulse th
temporarily reduces the metastable barrier could provide
required conditions~corresponding techniques are develop
in connection with femptochemistry; see, e.g., Ref.@44#!.
The duration of the pulse must be much smaller th
t exp(bW* ) in order to observe transient effects, but the l
ter condition can be quite realistic.

V. CONCLUSION

We considered transient escape of a Brownian part
from a one-dimensional metastable well described by a
tential W(x) in the overdamped and underdamped limi
The term ‘‘transient’’ implies time scales that exceed t
largest relaxation or increment timet near the equilibrium
points but are smaller than the Kramers time 1/I K . During
the time scale considered, the flux that starts from neglig
small values at smallt achieves the~quasi-!steady-state
value I K ~see Fig. 1!.

The main results are given by Eqs.~17! and ~31! for the
overdamped and underdamped cases, respectively. In
weak noise limit considered, these results turned out to
practically insensitive to the details of the potentialW(x). In
the overdamped case the potential affects the shape o
transient curve only through a single parametera, which
describes the asymmetry between the relaxation and the
crement times. In the underdamped situation the shape o
is
es
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transient curve is completely insensitive toW(x).
Experimentally, results can be of importance for lar

systems with the number of molecules taking part in
reaction comparable to exp(bW* ) if one is able to detect
even minor amounts of the product molecules. Similarit
between the Kramers and the nucleation problems wh
transient effects have been studied experimentally in g
detail @42,43# can be very useful in establishing limitation
for each specific system under consideration.

APPENDIX: THE GREEN’S FUNCTION
OF THE UNDERDAMPED PROBLEM NEAR J50

Let us define the Green’s function of Eq.~21! for small
values of the outer variableJ ~or for arbitrary values of the
inner variablez5Jbvs! in such a way that

w~z,t !5E
0

`

dy G~z,t;y!w~y,0!. ~A1!

It is known that for a harmonic potential a two-dimension
Fokker-Planck analog of Eq.~1! can be solved exactly. In
principle, the exact solution would allow one to calcula
G(x,t;y) directly. This might be useful when arbitrar
damping is considered. For the present, more modest
poses, it is sufficient and more instructive to evaluate
Green’s function from the already obtained Laplace tra
form. Expressing the Kummer functionsM (p,1,z) and
U(p,1,y) in Eq. ~27! through the Whittaker functions
M p21/2,0(2z) andW1/22p,0(y), respectively@35#, and using
standard tables of Laplace transformations@45#, one ends up
with

G~z,t;y!5
1

12e2t expH y1z

2 S 12coth
t

2D J I 0S Ayz

sinh~ t/2!
D .

~A2!

Here I 0 is the modified Bessel function and to simplify no
tations we sett51.

One can consider an asymptote of Eq.~A2! for z,t→`
with ze2t;const andy→0 ~the latter corresponds to a lo
calized initial condition!. This givesG;exp(2ze2t), which
with a size-dependent incubation timet i5 ln z is the same
type of dependence as described by Eq.~31!.
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