- 1. Consider an LC circuit with $L = 10 \, mH$, $C = 0.7 \, mF$ and capacitor initially charged to $10 \, V$.
 - (a) find the resonant frequency ω_0 in rad/s
 - (b) derive explicit formulas for the charge q(t) and the electric energy $U_C(t)$ in the capacitor
 - (c) derive explicit formulas for the current I(t) and the magnetic energy $U_M(t)$ in the inductor
 - (d) verify $U_M(t) + U_E(t) = const$ (and determine the const)
- 2. A series RLC circuit is driven by an external AC source with $V_{RMS} = 120 \text{ volt}$ and variable frequency f. Use L = 10 mH, C = 0.7 mF, $R = 0.1 \Omega$.
 - (a) Find the resonant frequency f_0 (in Hz)
 - (b) Plot I_{RMS} as a function of f. (Select the horizontal scale $f_0 \pm 40 Hz$ for a good plot).

 $\mathbf{2}$