1. A thin long wire A has twice the diameter and half the length of wire B. Both wires are made of the same material. (a) If the resistance of wire A equals R, find the resistance of Wire B; (b) compare the powers $\mathrm{Pa} / \mathrm{Pb}$ if the two wires are connected to a battery in parallel; (c) find $\mathrm{Pa} / \mathrm{Pb}$ if the two resistors (wires) are connected in series.
(a)
(b)
(c)
2. A wire has free electron density n_{e} of 8×10^{28} electrons per cubic meter and a cross-sectional area of $0.1 \mathrm{~mm}^{2}$. What is the drift velocity of the electrons when the current is 6.0 A ? $\left(\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}\right)$.
3. Consider a circuit with $\mathcal{E}=9.0 \mathrm{~V}$ and $\mathrm{R} 1=20 \Omega, \mathrm{R} 2=15 \Omega, \mathrm{R} 3=30 \Omega$. (a) find the equivalent resistance; (b) find the power supplied by the battery; (c) find all currents and voltages on individual resistors.

4. The figure shows a network of resistors, all having the resistances $\mathrm{R}=1 \mathrm{Ohm}$. Find the equivalent resistance, measured between points a and b .

