Gauss

In all pictures below $q= \pm 1 \mu C$ (small red/blue circles) or $q= \pm 2 \mu C$ (large red/blue). Distances in pictures are given in mm .

$$
\Phi=q_{\text {enc }} / \epsilon_{0}
$$

1. A square has a a side of 1 cm . The field $E=10^{5} \mathrm{~N} / \mathrm{C}$ makes an angle 30° with the normal. Find $\Delta \Phi$.

2. Find Φ through an elliptically shaped surface

3. A metal sphere with $R=2 m$ has a charge $Q=0.5 n C$.
a) find E for $r=0.25 m$ away from the center
b) same for $r=3 \mathrm{~m}$
4. A metal spherical shell with $R_{1}=1 \mathrm{~m}$ and $R=2 \mathrm{~m}$ has a charge $Q=0.5 n C$
(a) find $Q_{\text {in }}$ and $Q_{\text {out }}$
(b) find E for $r=0.25 \mathrm{~m}$
(c) find E for $r=1.5 \mathrm{~m}$
(d) find E for $r=3 \mathrm{~m}$
(e) sketch the charge distribution and the field
5. An additional positive charge $q=1 n C$ is placed at the center of the cavity
(a) find $Q_{\text {in }}$ and $Q_{\text {out }}$
(b) find E for $r=0.25 \mathrm{~m}$
(c) find E for $r=1.5 \mathrm{~m}$
(d) find E for $r=3 \mathrm{~m}$
(e) sketch the charge distribution and the field
6. the shell in problem 4 (with an empty cavity and the same extra charge Q) is deformed so that both the cavity and the outer surface take the shape of an ellipsoid
(a) find $Q_{\text {in }}$ and $Q_{\text {out }}$ and sketch
(b) find E for $r=2.5 \mathrm{~mm}$ away from the center of the cavity
(c) find E (approximately) for $r=25 \mathrm{~m}$ away from the center of the cavity
7. A large non-conducting sheet is uniformly charged with $\sigma=1.8 n C / \mathrm{m}^{2}$.
(a) find E at 1 mm away from the center of the sheet
(b) find the force which acts on a charge $Q=-0.5 \mathrm{nC}$ placed 8 mm away from the sheet
(c) sketch the field and the force
