Gauss

In all pictures below $q = \pm 1 \,\mu C$ (small red/blue circles) or $q = \pm 2 \,\mu C$ (large red/blue). Distances in pictures are given in mm.

$$\Phi = q_{enc}/\epsilon_0$$

1. A square has a side of $1\,cm$. The field $E = 10^5 \, N/C$ makes an angle 30^o with the normal. Find $\Delta \Phi$.

2. Find Φ through an elliptically shaped surface

- 3. A metal sphere with R = 2 m has a charge Q = 0.5 nC. a) find E for r = 0.25 m away from the center
 - b) same for r = 3 m

- 2
- 4. A metal spherical shell with $R_1 = 1 m$ and R = 2 m has a charge Q = 0.5 nC
 - (a) find Q_{in} and Q_{out}
 - (b) find E for r = 0.25 m
 - (c) find E for r = 1.5 m
 - (d) find E for r = 3 m
 - (e) sketch the charge distribution and the field
- 5. An additional positive charge q = 1 nC is placed at the center of the cavity
 - (a) find Q_{in} and Q_{out}
 - (b) find E for r = 0.25 m
 - (c) find E for r = 1.5 m
 - (d) find E for r = 3 m
 - (e) sketch the charge distribution and the field
- 6. the shell in problem 4 (with an empty cavity and the same extra charge Q) is deformed so that both the cavity and the outer surface take the shape of an ellipsoid
 - (a) find Q_{in} and Q_{out} and sketch
 - (b) find E for r = 2.5 mm away from the center of the cavity
 - (c) find E (approximately) for r = 25 m away from the center of the cavity
- 7. A large non-conducting sheet is uniformly charged with $\sigma = 1.8 nC/m^2$.
 - (a) find E at 1 mm away from the center of the sheet
 - (b) find the force which acts on a charge Q = -0.5 nC placed 8 mm away from the sheet
 - (c) sketch the field and the force