- 1. Consider an *LC* circuit with $L = 10 \, mH$, $C = 0.7 \, mF$ and capacitor initially charged to $10 \, V$.
 - (a) from conservation of energy, find the maximum current
 - (b) find the resonant frequency ω_0 in rad/s
 - (c) derive explicit formulas for the charge q(t) and the electric energy $U_C(t)$ in the capacitor
 - (d) derive explicit formulas for the current I(t) and the magnetic energy $U_M(t)$ in the inductor
 - (e) verify $U_M(t) + U_E(t) = const$ (and determine the const)
- 2. An LC circuit is driven by an external AC source with $\mathcal{E} = \mathcal{E}_m \sin(\omega_d t)$. Use $L = 10 \, mH, \ C = 0.7 \, mF, \ \mathcal{E}_m = 150 \, V, \ f_d = 60 \, Hz.$
 - (a) find ω_d
 - (b) write down the loop equation in terms of the charge on the capacitor $q(t) = Q \sin(\omega_d t)$.
 - (c) find the charge amplitude Q
 - (d) find the current amplitude I
 - (e) suppose, L can be varied; which value would bring the circuit into resonance?
 - (f) Plot I(L)

