Fields And Gauss

I. Dipole. Generic:

If charge Q at the observation point (black dot)

$$
\vec{F}=Q \vec{E}
$$

In all problems below $q= \pm 1 \mu C$ (small red/blue circles) or $q= \pm 2 \mu C$ (large red/blue), and $Q=0.5 \mu C$ (black dot). Distances are in mm .

For all configurations:
a)) find the direction of the field at the black dot; show your work to instructor
b)clearly identify L and d in each picture and calculate the magnitude of the field
c) calculate the magnitude of the force on Q

II. Zero points of field.

1. Charges $q=1 n C$ qnd $Q=-2 n C$ are placed at $x=0$ and $x=3 \mathrm{~cm}$. Identify the point with $E=0$.
2. The same for $Q=+2 n C$
III. Gauss.

$$
\Phi=q_{e n c} / \epsilon_{0}
$$

1. A square has a a side of 1 cm . The field $E=10^{5} \mathrm{~N} / \mathrm{C}$ makes an angle 30° with the normal. Find $\Delta \Phi$.

2. Find Φ through an elliptiically shaped surface

3. A metal sphere with $R=2 m$ has $Q=1 n C$.
a) find E for $r=0.25 \mathrm{~m}$
b) same for $r=3 m$.
IV. Extra credit
4. For $\lambda=1 \mu C / m$ find E at the red dot, at a distance $D=1 m$ away from an infinite line. (see lecture notes.)

5. The same, $D=1 m$ away from the end of a semi-infinite line:

$$
d E=k \lambda d x /(D+x)^{2}
$$

