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ELECTRICITY & MAGNETISM

Lecture notes for Phys 121. Part II.

Dr. Vitaly A. Shneidman

Department of Physics, New Jersey Institute of Technology, Newark, NJ 07102

(Dated: April 18, 2020)

Abstract

This part of Lecture Notes is mostly on magnetism. It continues Part I on electrostatics and

current. Please refer to Part I for the general information (Abstract) and for the Introduction on

vectors and vector fields.
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Dr. Vitaly A. Shneidman, Phys 121h, 9th Lecture

I. MAGNETIC FIELD AND MAGNETIC FORCE.

We now start studying a new vector field, the magnetic field ~B:

Notations: ~B , Units: [B] = T (tesla)

Earth B < 10−4 T (depends on location, magnetic ”South pole” is close to geographic ”North”)

a refrigerator magnet: B ∼ 10−2 T , MRI: B ∼ 1.5T , Lab magnet: B > 20T , . . .

Safety: time-independent magnetic field of several teslas or less is mostly safe, but if field is time-

dependent or if you move in or out of magnetic field, it can become dangerous even for modest

values of the field (will discuss later in connection with Faraday’s effect).

How does the magnetic field originate (in other words, What are the sources of this field)?

Unlike the electrostatic field E which is due to electric charges, there are no magnetic charges

(or, more cautiously, such charges have not been discovered despite intense search during the last

100 years - see the cover of Physics Today from a few years ago). In the absence of ”elementary”

sources of magnetic field, one can identify currents, including the microscopic current as electrons

in orbital motion around a nucleus, and permanent magnets. Many elementary particles, including

electrons, have their own magnetic moments. Competition of the inherent magnetic moment of the

electrons with magnetic effects due to orbital motion determines magnetic properties of a material;

usually, orbital motion prevails but on occasions (iron, nickel) the inherent magnetic moment takes

the upper hand.
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”Elementary” sources of magnetic field. Left -there are NO known ”magnetic charges” (particles

with only North or only South poles). Right - a microscopic ring current, as electrons around a

nucleus (note that direction of motion is opposite for electrons, due to a negative charge). The

North pole is on top, and the South pole is on the bottom. Many elementary particles have their

own magnetic dipole moments, with a similar structure of field.

Conventions for pictures

Problems with magnetism are always 3D. To simplify graphics, will use a 2D convention,

as in Fig. 1: if field goes into the page you see ”feathers-of-an-arrow” which flies away fro

you; if field goes out of the page, you see ”head-of-an-arrow” flying towards you. (A similar

convention will be used later when drawing currents which flow in or out of the page).

FIG. 1: Convention for 2D pictures of magnetic field. Left - field goes into the page; right - field

goes out of the page.
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1. Properties of magnetic field lines

Similar to electric field:

• tangent - direction of ~B

• density - proportional to
∣

∣

∣

~B
∣

∣

∣

• do not cross

Different from electric field:

• magnetic lines never start or end (i.e. there are NO magnetic charges)

• magnetic lines can loop (they loop around currents). This does not contradict conser-

vation of energy since the static magnetic field does not do work.
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II. MAGNETIC FORCE

The force acting on a charge moving with velocity ~v in field ~B is given by

~F = q~v × ~B (1)

Similarly to electric force, the magnetic force is proportional to charge and field magnitudes.

But, this force acts only on moving charges and is perpendicular (not parallel) to direction

of the field ~B.

v

B

F

v

B

F

Magnetic force on a positive particle, ~F = q~v × ~B. Note that ~F (blue) is perpendicular to both ~v

(red) and ~B (green) , and reaches maximum when ~v and ~B are perpendicular to each other. For

parallel (or antiparallel) ~v and ~B the force would be zero.

Power: P = ~F · ~v = 0 ⇒ no work by static magnetic field (2)

Example. Find acceleration of an electron if ~v = V (~i+~j) , ~B = b(~j+~k) (with V = 106m/s

and b = 1 T some positive numbers). Solution. Use the ”ring diagram” (or, look up the

components of the cross product):

~a =
1

me

~F =
1

me

(−|e|)~v × ~B =
1

me

(−|e|)V b(~i+~j)× (~j + ~k) =

=
1

me

(−|e|)V b(~i×~j+~i×~k+~j×~k) =
1

me

(−|e|)V b(~k−~j+~i) =
1

me

|e|V b(−~k+~j−~i) ∼ 1017
m

s2
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Example: separation of particles by charges and masses - see Fig. 2.

FIG. 2: Separation of particles of different signs in the magnetic field, as observed in radioactive

decay. The positive (red) particles deviate to the right (they were called ”alpha-particles” and

turned out to be nuclei of Helium). The negative (blue) particles deviate left. (they were called

”beta-particles” and turned out to be electrons). Neutral particles (green) do not deviate. (they

were called ”gamma-particles”, and turned out to be quanta of electromagnetic radiation). Note

that the path of negative particles is more curved, due to smaller mass.
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A. Circular motion of a particle

Since the magnetic force ~F is perpendicular to the velocity, the latter changes only the

direction while the magnitude (”speed”) remains constant. The same is true for ~F . Thus,

the magnetic force leads to circular motion.

Circular motion of a positive particle in magnetic field. The velocity of a particle is shown

in red, and the magnetic force (blue) provides a centripetal force for circular motion. The

period of revolution is independent of the velocity (!) - a faster particle will make a larger

circle, completing the revolution in the same time.

For the actual calculations we use the 2nd Law

m
v2

r
= qvB , or

r =
mv

qB
(3)

This is the experimental way to find q/m for elementary particles, and eventually to find

their masses (which otherwise are very small)- see the example on next page.

We now use the above equation to find the period of revolution T = 2πr/v:

T = 2π
m

qB
(4)

Doest not depend on the velocity (energy) of a particle (!)
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Example (hard). A particle is accelerated through a potential difference ∆V and the

enters magnetic field B at a right angle, where it revolves in a circle of radius r. Find q/m

and the period of revolution.

from work-energy theorem
1

2
mv2 = q∆V ⇒ v =

√

q

m
2∆V

we substitute this into

r =
mv

qB
⇒ r =

m

qB

√

q

m
2∆V =

1

B

√

m

q
2∆V ⇒ q

m
=

2∆V

(rB)2

The period of revolution : T = 2π
m

q

1

B
, is independent of∆V

Here are a few typical q/m ratios

proton :
q

m
≃ 1.6 · 10−19C

1.67 · 10−27 kg
∼ 108

C

kg

electron :
q

m
≃ 1.6 · 10−19C

9.11 · 10−31 kg
∼ 1011

C

kg

alpha-particle :
q

m
≃ 2× 1.6 · 10−19C

4× 1.67 · 10−27 kg
≈ 0.5 · 108 C

kg

The cyclotrone (advanced topic, not on exam)

Since magnetic field alone cannot change energy, need electric field to accelerate particles. The

cyclotrone is placed in strong magnetic field which is perpendicular to the plane of the picture and

which makes a particle to move in a circular ark. When the particle reaches the space between

the half-rings an electric field parallel to ~v accelerates the particle, increasing its energy and radius

of the ark (but not changing the period of revolution!). When the particle, after completing a

half circle, again enters the space between the half-rings, the electric field changes to the opposite

direction again being parallel to velocity vector and further accelerating the particle, etc.
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B. 3D motion of charged particles

In a uniform magnetic field, circular motion is observed only if ~v of a particle is strictly

perpendicular to ~B. More generally, the velocity can be broken into 2 components, ~v||

parallel to ~B and v⊥ perpendicular to B. Since the magnetic force contains a cross product,

the parallel component of the velocity will not matter and force will be only in direction

perpendicular to ~B with magnitude determined only by v⊥. This will determine the motion

in a plane perpendicular to ~B while motion along ~B will proceed with a constant speed

v||. A combination of linear and circular motion will produce a helix - see the left picture

below. The actual calculations, however, are on advanced side and can be skipped in the

first reading.

Left: uniform field. Brake ~v into components parallel and perpendicular to ~B

~v = ~v|| + ~v⊥ , ~F = q~v⊥ × ~B

r =
mv⊥
qB

, T = 2π
m

qB

v|| = const ⇒ step of the helix = v||T = 2π
mv||
qB

Right: non-uniform field. Paths of charged particles still approximately wound around

the field lines. Examples: Aurora Borealis and ’magnetic bottle’ - in class.
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Motion in combined ~B and ~E fields

When both ~B and ~E are present, one has to consider the total force which is the sum of

electric force ~Fe = q ~E and magnetic force ~Fm = q~v × ~B

~F = q
(

~E + ~v × ~B
)

(5)

For example, the condition that force is zero (i.e. particle moves in a straight line) results

in a condition

~E + ~v × ~B = 0

regardless of the sign of the charge. Note that in order to have a zero force, ~E cannot be

parallel to ~B and in the simplest case when it is perpendicular, E = vB

In a general case, eq.(5) should be combined with the Newton equation

m~a = ~F

Solution is hard, and can be obtained analytically only when both fields are uniform and

perpendicular to each other. Otherwise, it is the work for a computer. An example of a

cycloid is given below.

E

Motion of a charged particle in magnetic field, ~B which points in the vertical z-direction;

the electric field ~E points in the y-direction, into the page. With vz = 0 the particle stays in

the plane but drifts in the x-direction. [The latter is important in understanding the rather

advanced Hall effect].
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C. Magnetic force on a wire

Conventional current inside a wire can be represented as motion of positive charges q

with drift velocity v = vd. Each charge experiences a force q~v× ~B (shown for a single charge

in the picture).

v

+

+

+

+ +

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

B

F

The forces add up to give the total force on the segment of wire of length L. Transition

from formulas for a single charge which moves with velocity ~v to formulas for a small wire

which carries current i and has length ~L (vector in direction of current), is given by

q~v → i~L (6)

Thus

F = iLB , or in vector form ~F = i~L× ~B (7)

Example: current (blue) up in the plane of the page; field out of the page. Find the direction

of force (red).

Note: picture can be rotated.

Now, derivation of eq. (7). Force on a single charge q: ~Fi = q~vd × ~B (~vd is the drift

velocity). Force on a unit volume (with n the number of charges in unit volume and ~J = nq~vd

the density of current): n · ~Fi = nq~vd × ~B = ~J × ~B Multiply by volume V = LA (with L

length of wire and A the cross-sectional area) and use i = JA to get eq. (7).
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FIG. 3: Torque on a frame with current (left) and brush contacts(right) used to ensure spinning

in one direction.

A loop with current will experience a torque when placed in magnetic field. Major

application - electric motor. If ~A is the vector-area of the loop (in the direction of the

normal) and θ is the angle between ~A and ~B, then torque

τ = AIB sin θ (8)

In vector form: magnetic moment of a loop

~µ = I ~A (9)

where the r.h. rule is used to find direction of µ and it should be multiplied by the number

of turns N for a coil. Then,

~τ = ~µ× ~B (10)

Here is the math derivation. Let the frame in fig. 3 be composed of the following vectors

(starting from axis, along currents): ~a, ~b, −2~a ,−~b, ~a. Note, ~A = 2~a×~b, while forces on the

”b” sides equal ±I~b × ~B = ±~Fb . Thus, ~τ = 2~a × ~Fb = I ~A × ~B, which proves the above

equations.
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Dr. Vitaly A. Shneidman, Phys 121h, 10th Lecture

III. MAGNETIC FIELDS FROM CURRENTS

A. Straight wire

Magnetic field (red circular lines) due to a long straight current (blue). Note the direction

of the field determined by the r.h. rule. Right: same in a 2D view.

Direction: r.h. rule. Thumb of r.h. goes with the current in the wire; curled fingers

show direction of ~B. Field lines circle around the current. The formula for the magnitude

B(r) can be derived from various fundamental principles (whatever we agree to treat as

”fundamental”). At the moment we use it as ”empirical result”:

B =
µ0i

2πr
, µ0 = 4π · 10−7 m · T

A
(11)

µ0 − magnetic permeability constant. In vector form ~r

~B =
µ0

~I × ~r

2πr2
(12)
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B. Magnetic force between two parallel wires

Consider two parallel wires, a and b with currents ia and ib in the same direction. Wires are

separated by a distance d and have length L each. We find the force on wire b in two steps:

1) find the field due to a at the location of b and 2) find the force on b

We will do steps 1) and 2) first for the direction and then for the magnitude. From direc-

tion we get that parallel currents attract (and opposite -antiparallel- currents repel!). For

magnitude, step 1) gives from eq. (11)

Ba =
µ0ia
2πd

Then, from formula for force on a wire F = iLB:

Fb = ibLBa = ibL
µ0ia
2πd

Fb =
µ0iaibL

2πd
(13)

Checkpoint: find the force on wire a. Should satisfy the 3rd Law.
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C. The Biot-Savarat law

How to find a field due to a wire of arbitrary complex shape?

Contribution of a small wire with current i is

d ~B =
µ0

4π
i
d~s× ~r

r3
(14)

Here d~s is the vector which indicates the elementary wire (in the direction of the current),

while ~r goes from the wire to the observation point.

The superposition principle. Fields of different elementary wires add up as vectors. Can

be used, in principle, to find a field from a wire of any complex shape or from several wires.

Note: there will be no field in the direction of the wire.
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1. Applications of Biot-Savarat

Straight wire. Can derive the above formula 11, but will get it more efficiently from

the Ampere’s theorem. However, will discuss an example of field due to 2 parallel wires to

illustrate the superposition.

Superposition of fields due to two currents, Left: one into the page (red) and one out of the

page (blue); resultant field at a point equidistant from both currents will be up. Right (for

which illustrative calculations are done below): both currents out of the page.

Let 2a - distance between wires, r - distance from each wire to the observation point;

h =
√
r2 − a2. Full field ~B - black (horizontal) sum of red and blue. Note triangle formed

by red and blue fields is similar to the one formed by the two currents and observation point.

Thus,
B/2

B1
=

h

r
, B = 2B1

h

r
=

µ0I

πr

h

r
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Ring (center only).

The simplification here is that d~s is always perpendicular to ~r, and that r = const = R (R

is the radius of the ring) for every element of the ring. Thus, dB = µ0i
4πr2

ds. The direction is

determined by the r.h. rule (it is more convenient to curl fingers with the current; then the

thumb points in the direction of the field). Contributions of individual elements just add

up. Thus

Bring =
µ0i

4πr2

∫ 2πR

0

ds =
µ0i

2R

For an arc with angle φ < 2π the field is reduced proportionally

Barc =
µ0i

2R
· φ

2π
(15)

FIG. 4: Example. Superposition of field from 2 half-loops with R > r: B1 = µ0I/(2r) × 0.5 (out

of the page) and B2 = µ0I/(2R) × 0.5 < B1 (into the page).

B = B1 −B2 =
µ0I

4

(

1

r
− 1

R

)
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Example. Consider a semi-infinite wire with current I to the right. Find field B at a

distance D from the end, perpendicular to the direction of current.

dB

into)

I

D

0-∞

r


dx

dB =
µ0

4π
I
dx r sinα

r3
, r =

√
x2 +D2 , sinα =

D

r

B =

∫ 0

−∞

dB(x) =
µ0

4π
ID

∫ 0

−∞

dx

(x2 +D2)3/2
=

µ0

4π
I

x

D (x2 +D2)1/2

∣

∣

∣

∣

∣

0

−∞

B =
µ0I

4πD

(which is half of the field of an infinite wire).
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D. The Ampere’s theorem

n


Preliminaries: Geometry. A closed contour (geometric line) is considered, and a positive

direction along this contour is selected. A current is said to be enclosed if it passes inside

the contour, piercing the imaginary surface stretched on this contour. The contribution of

such a current is positive if it flows in the positive direction determined by the r.h. rule.

The Ampere’s theorem:

∮

~B · d~s = µ0ienc = µ0 (I1 − I2 + . . .) (16)
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1. Applications of AT
∮

~B · d~s = µ0Ienc

The AT is always valid, but to make it useful for calculations in each specific case one

needs to select a good contour which is consistent with the symmetry of the problem (when

it exists). Then the circulation can be evaluated even before ~B is known, and then used in

the AT to find ~B.

FIG. 5:

Calculating B outside and inside a long wire. Current - into the page (”X”); field lines

- CW. Outside, r > R - red dashed Ampere’s loop; inside r < R - black dashed. In both

cases
∮

~B · d~l = 2πrB, but only current inside the loop contributes to AT - full current I

for the outside loop, and I(r/R)2 for the inside loop.

Long wire: outside Good contour - circle around the wire, in the perpendicular plane. Radius

r, center at the wire. Then

∮

~B · d~s = B

∮

ds = 2πrB = (from AT) µ0i

which gives eq. (11) = µ0i/(2πr) (and R of the wire does not matter as long as r > R).

Long wire: inside

Assume that the current is uniformly distributed (has a constant density) inside the

wire with radius R. Contour - same, with the center on the axes of the cylindrical wire.

Circulation - same as above, 2πrB. Enclosed current is now different

ienc = i
πr2

πR2
⇒ B(r) =

µ0i

2πR

r

R
, r ≤ R

Note that field is the same when the surface of the wire is approached either from the inside

or from the outside.
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R
r

Bmax

B

Magnetic field as a function of the distance r from the axis of the wire of radius R, both

inside the wire (r < R) and outside the wire (r > R). The maximum Bmax = µ0I/(2πR) is

achieved on the surface r = R.

Solenoid.

Consider a long, tightly wound coil with current i. The coil has n turns of wire per meter,

and the radius turns out to be unimportant.

First, we need to understand the structure of field lines in order to get a feeling for the

symmetry.One has practically straight field lines inside the solenoid, while outside they curve

and are at a very large distance from each other. Direction of lines is given by the r.h. rule.

The cross section is shown on right, with the upper currents (red) going into the page and

the lower currents (blue) going out of the page. The magnetic field lines are shown by

horizontal red arrows.(North pole is on the left). The selected contour is shown by a dashed

rectangle. Only the lower side gives a non-zero contribution to circulation, and only those

currents which fall inside the rectangle contribute to the Ampere’s theorem.

We now select a ”good” contour. Consider a 2D cross section of the coil. For a contour

select a long rectangle (with length L) which is partly inside the solenoid and which contains

many turns, N = nL ≫ 1. Two sides are parallel to the axes of the solenoid, and only one

of those is inside. Note that only the latter contributes to circulation, so that one has
∮

~B · ds = BL = (from AT) = µ0Ienc = µ0NI = µ0nLI ⇒ BL = µ0nLI

B = µ0nI (17)

Note that B does not depend on the distance from the axes of the solenoid, as long as one

remains inside.
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x

x

x

x
x

x

x

x

x

x

x

Magnetic field inside a toroidal coil with inner and outer radii R1 and R2 , with current I

and N turns of the wire. In the cross section on right the in/out currents are shown by

red/blue circles. The magnetic field lines (red) are CCW inside the toroid. The Ampere’s

loop (dashed) has a radius r and is also inside the toroid. Note that only the out-of-the-page

(blue) currents contribute to AT.

∮

~B · d~l = 2πrB , Ienc = NI ⇒ from AT:

B = µ0IN/(2πr) , R1 < r < R2

For R2 ≈ R1 ≈ r one has N/(2πr) = n, the density of turns and one recovers eq.(17) for a

straight solenoid.
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Example. (Combination of fields and forces). A rectangular a× b frame with current I2

is placed at a distance c from a straight wire with current I1. Find the forces on each of the

4 sides: ~F1 - upper, ~F2 - lower, ~F3 -left side, ~F4 - right side.
I1

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

a

b

I2

c

Solution (2 step): First, find field (blue), then find forces - see picture.

F1 = µ0
I1I2 b

2πc
, F2 = µ0

I1I2 b

2π(c+ a)

dF3 = I2B(x)dx , B(x) = µ0I1/(2πx)

F3 =
µ0I1I2
2π

∫ c+a

c

dx

x
=

µ0I1I2
2π

ln
c+ a

c
= F4

Fnet = F1 − F2 =
µ0I1I2
2π

ab

c(c+ a)
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Advanced. Field and magnetic interaction of point charges.

In Biot-Savarat Law

Id~s → q~v : ~B =
µ0

4π
q
~v × ~r

r3

Find the ratio of Fm/Fe for 2 identical charges with velocities ~v separated by a distance

d.

v

v

Fm

Fm

Fe

Fe

+

+

B =
µ0

4π
q
v

d2
⇒ Fm = qvB =

µ0

4π
q2
v2

d2

Fe =
1

4πǫ0

q2

d2
⇒ Fm

Fe
= µ0ǫ0v

2

What is µ0ǫ0? Note:

[µ0ǫ0] =
s2

m2
,

1√
µ0ǫ0

=

(

1

4π × 10−7
4π × 9× 109

)1/2

=
(

9× 1016
)1/2

= 3× 108
m

s
⇒

Fm

Fe
=

v2

c2
, c - speed of light
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Dr. Vitaly A. Shneidman, Phys 121, 11th Lecture

IV. THE FARADAY’S LAW

FIG. 6: An old circus show ”Lady-on-a-Horse”. The bulb lights up without any apparent reason??

A. Experimental

Consider a contour. If the magnetic flux (the number of lines which penetrate through

the contour) changes with time, there will be an EMF induced in the contour, as in Fig. 7.

If the contour is conducting, there also will be current. The faster is the change in the flux,

the larger is the EMF.

B. Theory

1. Magnetic flux

Definition:

ΦB =

∫

~B · d ~A (18)

Integration can go over ANY surface limited by a given contour.

Units: Wb (webers)
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FIG. 7: Illustration of the law of induction. If the magnetic flux through the blue contour changes,

there will be an induced EMF in the contour (and there will be current if the contour is conducting).

The magnitude of EMF is given by the Faraday’s law, and the direction is determined by the Lenz’s

rule. In the illustration, since the flux tends to decrease, the induced current will attempt to support

the changing flux, being directed as shown.

C. The Law

E = −dΦB

dt
(19)

Note that the law is valid, and has the same form, regardless of the physical reason why

ΦB is changing. Several typical situations can be identified for

Φ(t) ≃ ~A · ~B
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•
B = B(t) ⇒ E = − ~A · d

~B

dt

e.g. when a bar magnet approaches the contour (or the contour approaches the mag-

net), or the field through a given contour is generated by another coil with a time-

dependent current.

Mutual induction:
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•
ΦB ≈ BA cos [φ(t)] ⇒ E = −AB

d cos φ

dt

as in frame revolving between the poles of a bar magnet (prototype of an electric

generator).

π

ω

2π

ω

t

-ℰmax

ℰmax

ℰ

For φ(t) = ωt equation (19) will give

E = Emax sinωt , Emax = ωBA
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•
A = A(t) ⇒ E = −B

dA

dt

E.g., for a rod which moves with velocity v - see Fig. 8:

A = Lx(t) ⇒ dA

dt
= Lv ⇒ E = vLB

FIG. 8: Induction in a contour formed by rails and a sliding rod. The magnetic field B (which

goes into the page) is constant, but the flux ΦB = BA is changing since the area A is increasing.

The magnitude of EMF is given by E = −BdA/dt = −vLB. The direction follows from the Lenz’s

rule. The current will be given by I ≈ E/R with R being the resistance of rails plus rod. For

non-conduction (or, imaginary) rails there will be no current, but the EMF still will be induced

• if the contour is a conducting loop, the flux can also change due to change in current

in the loop itself. This leads to self-induction and will be discussed separately.

D. Lenz’s rule

The magnetic flux due to an induced current opposes the changes in the original magnetic

flux.

This allows one to find the direction of induced current. This is consistent with conservation

of energy. If current is impossible (non-conducting loop), Lenz’s rule gives the direction of

EMF.

Example: fig. 8. (1) Flux Φ = AB into the page and grows ⇒ (2) induced field Bind

out of the page ⇒ (3) induced current - CCW
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E. Induced electric field

Consider a charge q being moved around a contour with EMF induced by a changing

flux. One has

E =
W

q
=

1

q

∮

~F · d~s =
∮

~E · d~s

Thus, the Fraday’s Law, eq. (19) can be written as
∮

~E · d~s = −dΦB

dt
(20)

Note that ~E is very different from the electrostatic field we studied before. Similarities

between induced and electrostatic electric field:

• both fields act on charges with forces

~F = q ~E

• both fields can be represented by field lines

Differences:

• lines of induced electric field can loop (and this does not contradict the conservation

of energy!)

• lines of induced field do not start or end (i.e. this field is produced not by charges,

but by changing magnetic flux).

F. Advanced: relativity of electric and magnetic fields

will be discussed in class
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V. SELF-INDUCTION

Slider on rails:

E = lvB , Iind = E/R , What if R = 0 ??

A. Inductance - definition

Start with static current i, then Φtot = Li

Units: [L] = H (henry) = T ·m2/A

Example: Solenoid, N turns, length l, area A

B = µ0iN/l , Φtot = NAB = NAµ0iN/l ⇒

L/l = µ0An
2 , n = N/l (21)

Now consider i = i(t) ⇒ Φtot = Φtot(t). From Faraday’s Law:

EL = −dΦtot/dt, thus

Self-induced EMF: EL = −L
di

dt
(22)
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B. RL circits

1. Decay of current

loop rule: EL − IR = 0 , ⇒ L
dI

dt
+ IR = 0 (23)

Solution:

I(t) = I0e
−t/τL , τL = L/R − inductive time constant (24)

[Checkpoint: verify that [τL] = s.] Note, if R → 0 (superconductor)

the current never decays.
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2. Build-up of current

loop rule: E + EL − iR = 0 ⇒ L
di

dt
+ iR = E

switch to new current I = i−E/R , L
dI

dt
+IR = 0 with I(0) = −E/R

This is the same differential equation as for RL

I(t) = I(0)e−t/τL ⇒ i(t) =
E
R

+ I(0)e−t/τL =
E
R

− E
R
e−t/τL

i(t) =
E
R

(

1− e−t/τL
)

(25)

Note: at t = 0 the inductor has ”infinite resistance”; at t → ∞

(constant current) it is just a piece of wire.
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Example:

t → 0 : ”clip off” the inductor

I1 = I2 =
E

R1 +R2

t → ∞ : replace inductor by a wire

I2 = 0 , I1 = E/R1
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C. Magnetic Energy of an Inductor

UL = −
∫ ∞

0

ELi dt = L

∫ ∞

0

i
di

dt
dt = L

∫ I

0

i di

or

UL =
1

2
LI2 (26)

Example An L = 4.0mH inductor with some initial current I0 is

discharged through a 0.25 Ω resistor. How long does it take to lose

half of the initial current? Half of the initial energy? Solution

τ =
L

R
= 16 · 10−3 s ;

i(t)

I0
= e−t/τ = 0.5

t/τ = − ln 0.5 = ln 2 , t = τ ln 2 ≈ 1.1 · 10−2 s

U(t) ∼ i(t)2 ⇒ U(t)

U(0)
= e−2t/τ = 0.5

2t/τ = − ln 0.5 = ln 2 , t =
1

2
τ ln 2 ≈ 5.5 · 10−3 s
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D. Advanced: Energy stored in magnetic field

From

B = µ0In , L = µ0An
2l

and volume V = lA

U =
1

2
LI2 =

1

2
µ0An

2l(B/µ0n)
2 =

B2V
2µ0

U/V =
B2

2µ0
(27)
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VI. ELECTROMAGNETIC OSCILLATIONS

A. math

iii =
√
−1

e±iiiα = cosα± iii sinα (28)

cosα =
eiiiα + e−iiiα

2
, sinα =

eiiiα − e−iiiα

2iii
(29)

d

dt
e±iiiωt = ±iiiωe±iiiωt , d2

dt2
e±iiiωt = −ω2e±iiiωt (30)
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B. LC-circuit, free oscillations

The capacitor is originally charged with Q = Qmax.

0.5 1 1.5 2 reduced time

-1

-0.5

0.5

1
reduced charge and current

0.5 1 1.5 2 reduced time

0.2

0.4

0.6

0.8

1

energies

Free oscillations. Reduced time is t/T , with T = 2π
√
LC, the period of oscillations. Left -

charge on capacitor q(t)/Qmax (red) and current in the inductor I(t)/Imax (blue). Note that

when charge is maximum (or minimum) current is zero, and vice versa. Right - electric

(red) and magnetic (blue) energies. Their sum (green line) is the total energy which remains

constant (and all energies are reduced by this value).
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1. Differential equation

From the loop rule:

EL + VC = 0

EL = −L
dI

dt
= L

d2q

dt2
and VC = q/C

L
d2q

dt2
+ q/C = 0 , a differential equation for q(t)

Look for a solution

q(t) = Q cos(ωt) , ω − ? (or, q(t) = Qeiiiωt)

d2q/dt2 = −ω2q , ⇒ q(t)
(

−Lω2 + 1/C
)

= 0, ⇒

ω = 1/
√
LC (31)

Checkpoint. Calculate explicitly the electric and magnetic energy,

and make sure their sum remains constant.

40



2. Damped oscillations

If the resistance of the LC circuit is non-negligible, the electro-

magnetic energy will not be conserved, and the amplitude will get

smaller with time - see Fig. 9. One can get the description math-

ematically by adding a term Rdq/dt into the l.h.s. of the above

differential equation.

1 2 3 4 5 6 reduced time

-0.5

0.5

1

current

FIG. 9: Free oscillations in an RLC-circuit. The upper (green) line shows the decaying amplitude

due to dissipation of energy in the resistance R. For a sufficiently large R (”overdamped case”)

there would be no oscillations at all.

Advanced: Loop equation.

q/C + EL − I(t)R = 0 , I(t) ∼ eiiiωt

q(t) = −
∫

I dt ∼ − 1

iiiω
eiiiωt , EL = −L

dI

dt
∼ iiiωLeiiiωt

− 1

iiiωC
− iiiωL−R = 0

ω2LC − iiiωRC − 1 = 0
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ω2
0 ≡

1

LC
, x ≡ ω

ω0
: x2 − ixR

√

C

L
− 1 = 0

x =
1

2
iiiR

√

C

L
±

√

1−R2C/4L

ω = ±Ω + iiiγ

Ω = ω0

√

1−R2C/4L , γ = ω0
1

2
R
√

C/L

I(t) ∼ eiiiωt = e±iiiΩte−γt
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C. Driven oscillations and resonance

E = Em sin (ωdt)

FIG. 10: LC-circuit. Driven oscillations.

1. Negligible R

Consider Fig. 10 with the driving EMF given by

E = Em sin (ωdt) with ωd different from ω0 =
1√
LC

This should be added into the r.h.s. of the differential equation:

L
d2q

dt2
+ q/C = Em sin (ωdt) or

d2q

dt2
+ ω2

0q =
Em
L

sin (ωdt)

look for a solution q(t) = Qm sin (ωdt)

Now the frequency is known, but Qm is the maximum, yet unknown

charge to appear on the capacitor. Similarly to free oscillations

d2q/dt2 = −ω2
dq ⇒ −ω2

dq + ω2
0q =

Em
L

sin (ωdt)

or with the definition of ω0 for free oscillations

Qm sin (ωdt)
(

−ω2
d + ω2

0

)

= Em/L · sin (ωdt)
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From here

Qm =
Em
L

1

ω2
0 − ω2

d

The amplitude for current is similar, and is given by Im = ωdQm.

Note a dramatic increase of the amplitude when ωd → ω0. This is

the resonance - see Fig. 11

0.5 1 1.5 2 2.5 3
reduced frequency

10

20

30

40

scaled amplitude

FIG. 11: Resonance in driven oscillations. When the driving frequency ωd is close to the natural

frequency ω0 = 1/
√
LC there is an enormous increase in the amplitude.

2. R 6= 0

Loop:

E − q

C
+ EL − I(t)R = 0

E = Emeiiiωdt , I(t) = Ime
iiiωdt

q =

∫

I(t) dt =
1

iiiωd
Ime

iiiωdt , EL = −LiiiωdIme
iiiωdt
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Em − 1

iiiωdC
Im − iiiωdLIm − ImR = 0

Im

[

R + iii

(

ωdL− 1

ωdC

)]

= Em

|Im|Z = |Em| , Z =

√

R2 +

(

ωdL− 1

ωdC

)2

3. Phasors

iii = eiii
π

2 ⇒ iiieiiiωt = eiii(ωt+
π

2
)

1
iii = e−iiiπ

2 ⇒ 1
iii e

iiiωt = eiii(ωt−
π

2
)

FIG. 12: A phasor. It spins in the counter-clockwise direction with the angular frequency ωd and

its vertical projection determines the physical quantity, e.g. voltage or current.

Phasors for voltage (red) and current (blue) for 3 different elements: resistor (left), capacitor

(middle) and inductor (right). Note that for a resistor the voltage and current have the same
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phase, for the capacitor current leads the voltage by 90o, and for the inductor the current lags by

90o.

FIG. 13: Solving a driven RLC circuit using phasors. The current (blue) is identical since all ele-

ments are in series. Voltages (red) are to be added as vectors, which can be done using Pythagorean

theorem. The resultant (dashed) should correspond to the driving EMF. In case of a resonance the

voltage on the inductor (leading voltage - upper left) and the voltage on capacitor (lagging voltage

- lower right) would completely cancel each other.

Capacitive reactance: XC =
1

ωdC

Inductive reactance: XL = ωdL

Impedance: Z =

√

R2 + (XL −XC)
2

Amplitude of current and phase angle:

I =
Em
Z

, tanφ =
XL −XC

R
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resonance: ωd = ω0 , XL = XC

Z = R = min , I = Em/R = max

R = 1 ohm

R = 5 ohm

950 1000 1050 1100
fd , Hz

20

40

60

80

100

120

Im , A

Amplitude of current for a variable driving frequency fd with fixed

L = 0.1H, C = 0.253µF (with fres = 1000Hz), E = 120V and

R = 1Ω (blue) or R = 5Ω (red-dashed).
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D. Power

5 10 15
t

-1.0

-0.5

0.5

1.0

sin(t)

5 10 15
t

0.2

0.4

0.6

0.8

1.0

sin
2(t)

I(t) = Im sin (ωdt) ⇒ Ī = 0 ???

I2(t) = I2m sin2 (ωdt) = I2m
1

2
(1− cos(2ωdt)) ⇒ Ī2 =

1

2
I2m

IRMS =
√

Ī2 =
1√
2
Im . Note: IRMS =

VRMS

Z

P̄ =
〈

I2(t)R
〉

= I2RMSR (32)

or

P̄ = IRMSVRMS cosφ , cosφ = R/Z
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E. Transformers

Φ1 = N1BA , Φ2 = N2BA

V1 = −dΦ1

dt
, V2 = −dΦ2

dt

V2 = V1
N2

N1

N2 > N1 - ”step up”, N2 < N1 - ”step down”

Current: Consider power

P1 = I1V1 cos φ1 , P2 = I2V2 cosφ2

Ideal: matched φ1 and φ2:

I1V1 = I2V2 , I2 = I1
N1

N2
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Transmission of energy. Power plant (step up): V = max , I = min - minimal losses I2R.

Consumer (step down): V = 110 volt ...
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VII. MAXWELL EQUATIONS AND ELECTROMAGNETIC WAVES

+

-

The idea of Maxwell’s construction. Upper left: a standard wire with current (a 2-dimensional

cross-section); magnetic field is determined from the Ampere’s circulation theorem,

∮

~B · ~s = µ0i

Upper right: the wire is cut and a parallel plate capacitor with plate area A is inserted. The current,

however, keeps coming in the original direction, charging the upper plate positively and the lower

negatively. There is an electric field between the plates E(t) = Q(t)/Aǫ0, with a time-dependent

electric flux,

dΦE/dt = d (AE) /dt = d (Q/ǫ0) /dt = i/ǫ0

The magnetic field is expected not to change.

Lower figure: the wire and the capacitor are removed (as scaffolding). The magnetic field is due

to the changing electric flux:
∮

~B · d~s = µ0ǫ0dΦE/dt

ǫ0 =
1

4πk
≃ 1

4π · 9 · 109 , µ0 = 4π10−7 , µ0ǫ0 = . . .
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A. The Maxwell equations

∮

~E · d ~A = qenc/ǫ0 (33)
∮

~B · d ~A = 0 (34)
∮

~E · d~s = −dΦB

dt
(35)

∮

~B · d~s = µ0ienc +
1

c2
dΦE

dt
(36)

with c = 1/
√
µ0ǫ0 ≃ 3 · 108 m/s, the speed

of light.
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B. And then there was Light!

Maxwell’s equations in empty space

∮

~E · d ~A = 0

∮

~B · d ~A = 0

∮

~E · d~s = −dΦB

dt
∮

~B · d~s = 1

c2
dΦE

dt

x

y

z
E

B

FIG. 14: Structure of an electromagnetic wave. The electric field (red) is in the ±z-direction, the

magnetic field (blue) is in the ±x-direction and the wave propagates in the y-direction. (This is

known as a plane, polarized wave). The distance in the y-direction in which the oscillations start

to repeat themselves is the wavelength.
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For example, the wave in Fig. 14 is described by

~E = ~E0 sin
{

2π
(y

λ
− ft

)}

~B = ~B0 sin
{

2π
(y

λ
− ft

)}

with
∣

∣

∣

~E0

∣

∣

∣
= c

∣

∣

∣

~B0

∣

∣

∣

f is known as frequency and λ as wavelength. One has

f =
c

λ

for any wavelength in empty space.
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Generation of EM waves

Consider R → 0:

Im =
Em
Z

, Z = lim
R→0

√

R2 + (XL −XC)2 = |XL −XC|

XL = ωdL , XC =
1

ωdC
, ω0 =

1√
LC

⇒ Im ∝ 1

|ω2
d − ω2

0|

Radiation power ∝ ω4

power = max ⇒ ω = max

ω ≃ 1√
LC

⇒ LC = min
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L/l = µ0A

(

N

l

)2

, L/l = min ⇒ l = max

∼
Linear antenna. Red line shows a snapshot of the current density. (Antenna works as a time-

dependent dipole). If length l is adjusted to correspond to half a wavelength at the driving fre-

quency, l = πc/ωd the antenna is ”in resonance” and will radiate intensely.
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