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Week 10 
Chapter 10 section 6-9

Rotation Part II

Review: Comparison Between 
Rotational and Linear Equations

Torque

 Torque, , is the tendency of a force to rotate 
an object about some axis
 Torque is a vector, but we will deal with its 

magnitude here

  = r F sin  = F d
 F is the force

  is the angle the force makes with the horizontal 

 d is the moment arm (or lever arm) of the force

Torque, cont

 The moment arm, d, is 
the perpendicular
distance from the axis 
of rotation to a line 
drawn along the 
direction of the force
 d = r sin Φ

Torque, final

 The horizontal component of the force (F cos 
) has no tendency to produce a rotation

 Torque will have direction
 If the turning tendency of the force is 

counterclockwise, the torque will be positive

 If the turning tendency is clockwise, the torque will 
be negative

Net Torque

 The force will tend to 
cause a 
counterclockwise 
rotation about O

 The force will tend to 
cause a clockwise 
rotation about O

    F1d1 – F2d2

1F


2F

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Torque vs. Force

 Forces can cause a change in translational 
motion
 Described by Newton’s Second Law

 Forces can cause a change in rotational 
motion
 The effectiveness of this change depends on the 

force and the moment arm

 The change in rotational motion depends on the 
torque

Torque Units

 The SI units of torque are N.m
 Although torque is a force multiplied by a distance, 

it is very different from work and energy

 The units for torque are reported in N.m and not 
changed to Joules

Torque and Angular 
Acceleration

 Consider a particle of 
mass m rotating in a 
circle of radius r under 
the influence of 
tangential force 

 The tangential force 
provides a tangential 
acceleration:
 Ft = mat

 The radial force,     
causes the particle to 
move in a circular path

tF


rF


Torque and Angular 
Acceleration, Particle cont.

 The magnitude of the torque produced by       
around the center of the circle is
  = Ft r = (mat) r

 The tangential acceleration is related to the angular 
acceleration
  = (mat) r = (mr) r = (mr 2) 

 Since mr 2 is the moment of inertia of the particle,
  = I
 The torque is directly proportional to the angular 

acceleration and the constant of proportionality is the 
moment of inertia

tF


Torque and Angular 
Acceleration, Extended

 Consider the object consists 
of an infinite number of 
mass elements dm of 
infinitesimal size

 Each mass element rotates 
in a circle about the origin, 
O

 Each mass element has a 
tangential acceleration

Torque and Angular 
Acceleration, Extended cont.

 From Newton’s Second Law
 dFt = (dm) at

 The torque associated with the force and 
using the angular acceleration gives
 d = r dFt = atr dm = r 2 dm

 Finding the net torque


 This becomes 

2 2r dm r dm     
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Clicker Question

You turn off your electric drill and find that the time interval for the 
rotating bit to come to rest due to frictional torque in the drill is Δt. 
You replace the bit with a larger one that results in a doubling of 
the moment of inertia of the drill’s entire rotating mechanism. 
When this larger bit is rotated at the same angular speed as the
first and the drill is turned off, the frictional torque remains the 
same as that for the previous situation. What is the time interval 
for this second bit to come to rest?

A. 4 Δt

B. 2 Δt

C. Δt

D.  0.5 Δt

E. 0.25 Δt

Torque and Angular 
Acceleration, Wheel Example

 Analyze:
 The wheel is rotating 

and so we apply  
 The tension supplies the 

tangential force

 The mass is moving in 
a straight line, so apply 
Newton’s Second Law
 Fy = may = mg - T

Work in Rotational Motion

 Find the work done by on 
the object as it rotates 
through an infinitesimal 
distance ds = r d

 The radial component of the 
force does no work because 
it is perpendicular to the
displacement

F


 sin

dW d

F r d 




F s
 
�

Power in Rotational Motion

 The rate at which work is being done in a 
time interval dt is

 This is analogous to  = Fv in a linear 
system

Power
dW d

dt dt

   

Work-Kinetic Energy Theorem 
in Rotational Motion

 The work-kinetic energy theorem for 
rotational motion states that the net work 
done by external forces in rotating a 
symmetrical rigid object about a fixed axis 
equals the change in the object’s rotational 
kinetic energy

2 21 1

2 2
f

i

ω

f iω
W Iω dω Iω Iω   

Work-Kinetic Energy Theorem, 
General

 The rotational form can be combined with the 
linear form which indicates the net work done 
by external forces on an object is the change 
in its total kinetic energy, which is the sum of 
the translational and rotational kinetic 
energies
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Summary of Useful Equations
Energy in an Atwood Machine, 
Example

 The blocks undergo 
changes in translational 
kinetic energy and 
gravitational potential 
energy

 The pulley undergoes a 
change in rotational 
kinetic energy

 Use the active figure to 
change the masses 
and the pulley 
characteristics

Rolling Object

 The red curve shows the path moved by a point on the rim of 
the object
 This path is called a cycloid

 The green line shows the path of the center of mass of the 
object

Pure Rolling Motion

 In pure rolling motion, an object rolls without 
slipping

 In such a case, there is a simple relationship 
between its rotational and translational 
motions

Rolling Object, Center of Mass

 The velocity of the 
center of mass is

 The acceleration of the 
center of mass is

CM

ds d
v R R

dt dt

   

CM
CMdv d

a R R
dt dt

   

Rolling Motion Cont.

 Rolling motion can be modeled as a combination of 
pure translational motion and pure rotational motion

 The contact point between the surface and the 
cylinder has a translational speed of zero (c)
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Total Kinetic Energy of a 
Rolling Object

 The total kinetic energy of a rolling object is 
the sum of the translational energy of its 
center of mass and the rotational kinetic 
energy about its center of mass
 K = ½ ICM 2 + ½ MvCM

2

 The ½ ICM2 represents the rotational kinetic energy of 
the cylinder about its center of mass

 The ½ Mv2 represents the translational kinetic energy 
of the cylinder about its center of mass

Total Kinetic Energy, Example

 Accelerated rolling motion is 
possible only if friction is 
present between the sphere 
and the incline
 The friction produces the 

net torque required for 
rotation

 No loss of mechanical 
energy occurs because the 
contact point is at rest 
relative to the surface at 
any instant

 Use the active figure to vary 
the objects and compare 
their speeds at the bottom

Total Kinetic Energy, Example 
cont

 Apply Conservation of Mechanical Energy
 Let U = 0 at the bottom of the plane

 Kf + U f = Ki + Ui

 Kf = ½ (ICM / R2) vCM
2 + ½ MvCM

2

 Ui = Mgh

 Uf = Ki = 0

 Solving for v
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Clicker Question

A basketball rolls across a floor without slipping, with its center of 
mass moving at a certain velocity. A block of ice of the same mass 
is set sliding across the floor with the same speed along a parallel 
line. How do their energies compare?

A. The basketball has 
more kinetic energy.

B. The ice has more 
kinetic energy.

C. They have equal kinetic 
energies.

D. Information is not 
sufficient to decide. 

Sphere Rolling Down an 
Incline, Example

 Conceptualize
 A sphere is rolling down an incline

 Categorize
 Model the sphere and the Earth as an isolated 

system

 No nonconservative forces are acting

 Analyze
 Use Conservation of Mechanical Energy to find v
 See previous result

Sphere Rolling Down an 
Incline, Example cont

 Analyze, cont
 Solve for the acceleration of the center of mass

 Finalize
 Both the speed and the acceleration of the center 

of mass are independent of the mass and the 
radius of the sphere

 Generalization
 All homogeneous solid spheres experience the 

same speed and acceleration on a given incline
 Similar results could be obtained for other shapes


