

Translational Equilibrium

- The first condition of equilibrium is a statement of translational equilibrium
- It states that the translational acceleration of the object's center of mass must be zero
 - This applies when viewed from an inertial reference frame

- It states the angular acceleration of the objec to be zero
- This must be true for any axis of rotation

Equilibrium Equations

- We will restrict the applications to situations in which all the forces lie in the xy plane
 - These are called coplanar forces since they lie in the same plane
- There are three resulting equations
 - ΣF_x = 0
 - $\Sigma F_v = 0$
 - Στ = 0

Axis of Rotation for Torque Equation

- The choice of an axis is arbitrary
- If an object is in translational equilibrium and the net torque is zero about one axis, then the net torque must be zero about any other axis

Elasticity

- So far we have assumed that objects remain rigid when external forces act on them
 - Except springs
- Actually, objects are deformable
 - It is possible to change the size and/or shape of the object by applying external forces
- Internal forces resist the deformation

Definitions Associated With Deformation

Stress

- Is proportional to the force causing the deformation
- It is the external force acting on the object per unit area
- Strain
 - Is the result of a stress
 - Is a measure of the degree of deformation

Elastic Modulus

- The elastic modulus is the constant of proportionality between the stress and the strain
 - For sufficiently small stresses, the stress is directly proportional to the stress
 - · It depends on the material being deformed
 - It also depends on the nature of the deformation

Elastic Modulus, cont

• The elastic modulus, in general, relates what is done to a solid object to how that object responds

• Various types of deformation have unique elastic moduli

Three Types of Moduli

- Young's Modulus
 - Measures the resistance of a solid to a change in its length
- Shear Modulus
 - Measures the resistance of motion of the planes within a solid parallel to each other
- Bulk Modulus
 - Measures the resistance of solids or liquids to changes in their volume

<section-header> See the active figure for variations in values The tensile stress is the ratio of the external force to the cross-sectional area A

Young's Modulus, cont

• The **tension strain** is the ratio of the change in length to the original length

• Young's modulus, Y, is the ratio of those two ratios:

$$Y \equiv \frac{\text{tensile stress}}{\text{tensile strain}} = \frac{F_A}{\Delta L_A}$$

• Units are N / m²

Stress vs. Strain Curve, cont

- The elastic limit is the maximum stress that can be applied to the substance before it becomes permanently deformed
- When the stress exceeds the elastic limit, the substance will be permanently deformed
 - The curve is no longer a straight line
- With additional stress, the material ultimately breaks

Shear Modulus, cont · For small deformations, no change in volume occurs with this deformation A good first approximation • The shear stress is F / A • F is the tangential force • A is the area of the face being sheared

- The shear strain is Δx / h
 - Ax is the horizontal distance the sheared face moves
 - h is the height of the object

Compressibility

• It may be used instead of the bulk modulus

Moduli and Types of Materials

- Both solids and liquids have a bulk modulus
- Liquids cannot sustain a shearing stress or a tensile stress
 - If a shearing force or a tensile force is applied to a liquid, the liquid will flow in response

Moduli Values			
Tungsten	35×10^{10}	14×10^{10}	20×10^{1}
Steel	20×10^{10}	$8.4 imes 10^{10}$	6×10^{1}
Copper	11×10^{10}	4.2×10^{10}	14×10^{1}
Brass	9.1×10^{10}	3.5×10^{10}	6.1×10^{1}
Aluminum	7.0×10^{10}	2.5×10^{10}	7.0×10^{10}
Glass	$6.5-7.8 \times 10^{10}$	$2.6-3.2 \times 10^{10}$	$5.0-5.5 \times 10^{1}$
Quartz	5.6×10^{10}	2.6×10^{10}	2.7×10^{1}
Water	_	-	0.21×10^{1}
			9.8×10^{1}

The concrete is stronger under compression than under tension

