Week2: Chapter 2

Motion in One Dimension

Clicker Testing

- What is your SAT Scores (all 3 parts Math+Reading+Writing)
- A. Above 2200
- B. 1900 to 2200
- C. 1600 to 1900
- D. Below 1600
- E. Unknown or do not want to tell

Lecture Quiz

- Starting from one oasis, a camel walks 25 km in a direction 30° south of west and then walks 30 km toward the north to a second oasis. What distance separates the two oases?
- A. 15 km
- B. 48 km
-C. 28 km
- D. 53 km
- E. 55 km

Kinematics

- Describes motion while ignoring the agents that caused the motion
- For now, will consider motion in one dimension
- Along a straight line
- Will use the particle model
- A particle is a point-like object, has mass but infinitesimal size

Position-Time Graph

- The position-time graph shows the motion of the particle (car)
- The smooth curve is a guess as to what happened between the data points

Motion of Car

- Note the relationship between the position of the car and the points on the graph
- Compare the different representations of the motion

Data Table

- The table gives the actual data collected during the motion of the object (car)
- Positive is defined as being to the right

TABLE 2.1
Position of the Car at Various Times

Position	$\boldsymbol{t}(\mathbf{s})$	$\boldsymbol{x}(\mathbf{m})$
(A)	0	30
(B)	10	52
(C)	20	38
(D)	30	0
(E)	40	-37
(A)	50	-53

Displacement

- Defined as the change in position during some time interval
- Represented as Δx
$\Delta x \equiv x_{f}-x_{i}$
- SI units are meters (m)
- Δx can be positive or negative
- Different than distance - the length of a path followed by a particle

Distance vs. Displacement An Example

- Assume a player moves from one end of the court to the other and back
- Distance is twice the length of the court
- Distance is always positive
- Displacement is zero
- $\Delta x=x_{f}-x_{i}=0$ since
$x_{f}=x_{i}$

Vectors and Scalars

- Vector quantities need both magnitude (size or numerical value) and direction to completely describe them
- Will use + and - signs to indicate vector directions
- Scalar quantities are completely described by magnitude only

Average Velocity

- The average velocity is rate at which the displacement occurs

$$
v_{x, a v g} \equiv \frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{\Delta t}
$$

- The x indicates motion along the x -axis
- The dimensions are length / time [L/T]
- The SI units are m/s
- Is also the slope of the line in the position time graph

Average Speed

- Speed is a scalar quantity
- same units as velocity
- total distance / total time: $v_{\text {avg }} \equiv \frac{d}{t}$
- The speed has no direction and is always expressed as a positive number
- Neither average velocity nor average speed gives details about the trip described

Instantaneous Velocity

- The limit of the average velocity as the time interval becomes infinitesimally short, or as the time interval approaches zero
- The instantaneous velocity indicates what is happening at every point of time

Instantaneous Velocity, graph

- The instantaneous velocity is the slope of the line tangent to the x vs. t curve
- This would be the green line
- The light blue lines show that as Δt gets smaller, they approach the green line

Instantaneous Velocity, equations

- The general equation for instantaneous velocity is

$$
v_{x}=\lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}=\frac{d x}{d t}
$$

- The instantaneous velocity can be positive, negative, or zero

Instantaneous Speed

- The instantaneous speed is the magnitude of the instantaneous velocity
- The instantaneous speed has no direction associated with it

Particle Under Constant Velocity

- Constant velocity indicates the instantaneous velocity at any instant during a time interval is the same as the average velocity during that time interval
- $v_{x}=v_{x, a v g}$
- The mathematical representation of this situation is the equation

$$
v_{x}=\frac{\Delta x}{\Delta t}=\frac{x_{t}-x_{i}}{\Delta t} \quad \text { or } \quad x_{f}=x_{i}+v_{x} \Delta t
$$

- Common practice is to let $\mathrm{t}_{\mathrm{i}}=0$ and the equation becomes: $x_{f}=x_{i}+v_{x} t$ (for constant v_{x})

Particle Under Constant Velocity, Graph

- The graph represents the motion of a particle under constant velocity
- The slope of the graph is the value of the constant velocity
- The y-intercept is x_{i}

Average Acceleration

- Acceleration is the rate of change of the velocity

$$
a_{x, a v g} \equiv \frac{\Delta v_{x}}{\Delta t}=\frac{v_{x f}-v_{x i}}{t_{f}-t_{i}}
$$

- Dimensions are L/T ${ }^{2}$
- SI units are $\mathrm{m} / \mathrm{s}^{2}$
- In one dimension, positive and negative can be used to indicate direction

Instantaneous Acceleration

- The instantaneous acceleration is the limit of the average acceleration as Δt approaches 0

$$
a_{x}=\lim _{\Delta t \rightarrow 0} \frac{\Delta v_{x}}{\Delta t}=\frac{d v_{x}}{d t}=\frac{d^{2} x}{d t^{2}}
$$

- The term acceleration will mean instantaneous acceleration
- If average acceleration is wanted, the word average will be included

Instantaneous Acceleration -graph

- The slope of the velocity-time graph is the acceleration
- The green line represents the instantaneous acceleration
- The blue line is the average acceleration

(b)

Graphical Comparison

Given the displacement-
time graph (a)

- The velocity-time graph is found by measuring the slope of the position-time graph at every instant
- The acceleration-time graph is found by measuring the slope of the velocity-time graph at every instant

Acceleration and Velocity, 1

- When an object's velocity and acceleration are in the same direction, the object is speeding up
- When an object's velocity and acceleration are in the opposite direction, the object is slowing down

| | |
| :--- | :--- | :--- |
| Acceleration and Velocity, 2 | |

Acceleration and Velocity, 3	
- Images become farther apart as time increases - Velocity and acceleration are in the same direction - Acceleration is uniform (violet arrows maintain the same length) - Velocity is increasing (red arrows are getting longer) - This shows positive acceleration and positive velocity	

| | |
| :--- | :--- | :--- | :--- | :--- |
| Acceleration and Velocity, 4 | |

Acceleration and Velocity, final

- In all the previous cases, the acceleration was constant
- Shown by the violet arrows all maintaining the same length
- The diagrams represent motion of a particle under constant acceleration
- A particle under constant acceleration is another useful analysis model

Graphical Representations of Motion

- Observe the graphs of the car under various conditions
- Note the relationships among the graphs
- Set various initial velocities, positions and accelerations

Kinematic Equations summary			
TABLE 2.2			
Kinematic Equations for Motion of a Parricle Under Constant Acceleration			
2.13	$v_{d}=v_{t}+a_{t}$	Velociy as:	
2.15	$x_{1}=x_{i}+\frac{1}{1}\left(v_{u}+v_{,}\right)^{\prime} t$	Position as	and dime
2.16	$x_{1}=x_{i}+v_{2}+1+1 a_{1} z^{2}$	Position as	
2.17	$v_{f}{ }^{2}=v_{s}^{2}+2 a_{s}\left(x_{y}-x_{x}\right)$	Velociyas	
Nemememin	mex		

Kinematic Equations

- The kinematic equations can be used with any particle under uniform acceleration.
- The kinematic equations may be used to solve any problem involving one-dimensional motion with a constant acceleration
- You may need to use two of the equations to solve one problem
- Many times there is more than one way to solve a problem

Kinematic Equations, specific

- For constant $a, v_{x f}=v_{x i}+a_{x} t$
- Can determine an object's velocity at any time t when we know its initial velocity and its acceleration
- Assumes $\mathrm{t}_{\mathrm{i}}=0$ and $\mathrm{t}_{\mathrm{f}}=\mathrm{t}$
- Does not give any information about displacement

Kinematic Equations, specific

- For constant acceleration,

$$
v_{x, a v g}=\frac{v_{x i}+v_{x f}}{2}
$$

- The average velocity can be expressed as the arithmetic mean of the initial and final velocities

Kinematic Equations, specific

- For constant acceleration,

$$
x_{f}=x_{i}+v_{x, a v g} t=x_{i}+\frac{1}{2}\left(v_{x i}+v_{f x}\right) t
$$

- This gives you the position of the particle in terms of time and velocities
- Doesn't give you the acceleration

Kinematic Equations, specific

- For constant acceleration,

$$
x_{f}=x_{i}+v_{x i} t+\frac{1}{2} a_{x} t^{2}
$$

- Gives final position in terms of velocity and acceleration
- Doesn't tell you about final velocity

Kinematic Equations, specific

- For constant a,

$$
v_{x f}^{2}=v_{x i}^{2}+2 a_{x}\left(x_{f}-x_{i}\right)
$$

- Gives final velocity in terms of acceleration and displacement
- Does not give any information about the time

When $\mathrm{a}=0$

- When the acceleration is zero,
- $v_{x f}=v_{x i}=v_{x}$
- $x_{f}=x_{i}+v_{x} t$
- The constant acceleration model reduces to the constant velocity model

Graphical Look at Motion: displacement - time curve

- The slope of the curve is the velocity
- The curved line indicates the velocity is changing
- Therefore, there is an acceleration

(a)

Graphical Look at Motion: velocity - time curve

- The slope gives the acceleration
- The straight line indicates a constant acceleration

(b)

Graphical Look at Motion:

 acceleration - time curve- The zero slope
indicates a constant acceleration

(c)

Graphical Motion with Constant Acceleration

- A change in the acceleration affects the velocity and position

- Note especially the graphs when $\mathrm{a}=0$

- Match a given velocity
graph with the corresponding acceleration graph
- Use Clickers
- A. (a) matches (d)
- B. (a) matches (f)
- C. (b) matches (d)
- D. (b) matches (e)
- E, (c) matches (f)

Test Graphical Interpretations

 $\because:$
$\because \because:$

Galileo Galilei

- 1564-1642
- Italian physicist and astronomer
- Formulated laws of motion for objects in free fall
- Supported heliocentric universe

Acceleration of Freely Falling Object

- The acceleration of an object in free fall is directed downward, regardless of the initial motion
- The magnitude of free fall acceleration is $g=9.80$ $\mathrm{m} / \mathrm{s}^{2}$
- g decreases with increasing altitude
- g varies with latitude
- $9.80 \mathrm{~m} / \mathrm{s}^{2}$ is the average at the Earth's surface
- The italicized g will be used for the acceleration due to gravity
- Not to be confused with g for grams

Freely Falling Objects

- A freely falling object is any object moving freely under the influence of gravity alone.
- It does not depend upon the initial motion of the object
- Dropped - released from rest
- Thrown downward
- Thrown upward

Acceleration of Free Fall, cont.

- We will neglect air resistance
- Free fall motion is constantly accelerated motion in one dimension
- Let upward be positive
- Use the kinematic equations with $a_{y}=-g=$ $-9.80 \mathrm{~m} / \mathrm{s}^{2}$

Free Fall - an object thrown downward

- $\mathrm{a}_{\mathrm{y}}=-\mathrm{g}=-9.80 \mathrm{~m} / \mathrm{s}^{2}$
- Initial velocity $\neq 0$
- With upward being positive, initial velocity will be negative

Free Fall -- object thrown upward

- Initial velocity is upward, so positive
- The instantaneous velocity at the maximum height is zero
- $\mathrm{a}_{\mathrm{y}}=-g=-9.80 \mathrm{~m} / \mathrm{s}^{2}$
everywhere in the motion

Thrown upward, cont.

- The motion may be symmetrical
- Then $\mathrm{t}_{\mathrm{up}}=\mathrm{t}_{\text {down }}$
- Then $v=-v_{0}$
- The motion may not be symmetrical
- Break the motion into various parts
- Generally up and down

Free Fall Example

- Initial velocity at A is upward (+) and acceleration is $-g\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
- At B, the velocity is 0 and the acceleration is $-g\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
- At C, the velocity has the same magnitude as at A , but is in the opposite direction
- The displacement is -50.0 m (it ends up 50.0 m below its starting point)

Kinematic Equations from Calculus

- Displacement equals the area under the velocity - time curve

$$
\lim _{\Delta t_{n} \rightarrow 0} \sum_{n} v_{x n} \Delta t_{n}=\int_{t_{i}}^{t_{f}} v_{x}(t) d t
$$

- The limit of the sum is a definite integral

Kinematic Equations - General

 Calculus Form$a_{x}=\frac{d v_{x}}{d t}$
$v_{x f}-v_{x i}=\int_{0}^{t} a_{x} d t$
$v_{x}=\frac{d x}{d t}$
$x_{f}-x_{i}=\int_{0}^{t} v_{x} d t$

Kinematic Equations Calculus Form with Constant Acceleration

- The integration form of $v_{f}-v_{i}$ gives

$$
v_{x f}-v_{x i}=a_{x} t
$$

- The integration form of $x_{f}-x_{i}$ gives

$$
x_{f}-x_{i}=v_{x i} t+\frac{1}{2} a_{x} t^{2}
$$

