Lecture Quiz

- A particle confined to motion along the x axis moves with constant acceleration from $x=2.0 \mathrm{~m}$ to $x=8.0 \mathrm{~m}$ during a $1-\mathrm{s}$ time interval. The velocity of the particle at $x=2.0$ m is $2.0 \mathrm{~m} / \mathrm{s}$. What is the acceleration during this time interval?
A. $\quad 4.0 \mathrm{~m} / \mathrm{s}^{2}$
B. $\quad 3.2 \mathrm{~m} / \mathrm{s}^{2}$
C. $\quad 6.4 \mathrm{~m} / \mathrm{s}^{2}$
D. $\quad 8.0 \mathrm{~m} / \mathrm{s}^{2}$
E. $\quad 5.7 \mathrm{~m} / \mathrm{s}^{2}$

Motion in Two Dimensions

- In two- or three-dimensional kinematics, everything is the same as in one-dimensional motion except that we must now use full vector notation
- Positive and negative signs are no longer sufficient to determine the direction

Position and Displacement

- The position of an object is described by its position vector, $\overrightarrow{\mathbf{r}}$
- The displacement of the object is defined as the change in its position
- $\Delta \overrightarrow{\mathbf{r}} \equiv \overrightarrow{\mathbf{r}}_{f}-\overrightarrow{\mathbf{r}}_{i}$

Average Velocity

- The average velocity is the ratio of the displacement to the time interval for the displacement

$$
\overrightarrow{\mathbf{v}}_{\mathrm{avg}} \equiv \frac{\Delta \overrightarrow{\mathbf{r}}}{\Delta t}
$$

- The direction of the average velocity is the direction of the displacement vector
- The average velocity between points is independent of the path taken
- This is because it is dependent on the displacement, also independent of the path

Instantaneous Velocity, cont

- The direction of the instantaneous velocity vector at any point in a particle's path is along a line tangent to the path at that point and in the direction of motion
- The magnitude of the instantaneous velocity vector is the speed
- The speed is a scalar quantity

Average Acceleration

- The average acceleration of a particle as it moves is defined as the change in the instantaneous velocity vector divided by the time interval during which that change occurs.

$$
\overrightarrow{\mathbf{a}}_{a v g} \equiv \frac{\overrightarrow{\mathbf{v}}_{\mathrm{f}}-\overrightarrow{\mathbf{v}}_{i}}{t_{f}-t_{i}}=\frac{\Delta \overrightarrow{\mathbf{v}}}{\Delta t}
$$

Average Acceleration, cont

- As a particle moves, the direction of the change in velocity is found by vector subtraction $\Delta \overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{v}}_{f}-\overrightarrow{\mathbf{v}}_{i}$
- The average acceleration is a vector quantity directed along

Instantaneous Acceleration

- The instantaneous acceleration is the limiting value of the ratio $\Delta \overrightarrow{\mathbf{v}} / \Delta t$ as Δt approaches zero
$\overrightarrow{\mathbf{a}} \equiv \lim _{\Delta t \rightarrow 0} \frac{\Delta \overrightarrow{\mathbf{v}}}{\Delta t}=\frac{d \overrightarrow{\mathbf{v}}}{d t}$
- The instantaneous equals the derivative of the velocity vector with respect to time

Kinematic Equations for TwoDimensional Motion

- When the two-dimensional motion has a constant acceleration, a series of equations can be developed that describe the motion
- These equations will be similar to those of onedimensional kinematics
- Motion in two dimensions can be modeled as two independent motions in each of the two perpendicular directions associated with the x and y axes
- Any influence in the y direction does not affect the motion in the x direction

Kinematic Equations, 2

- Position vector for a particle moving in the xy plane $\overrightarrow{\mathbf{r}}=x \hat{\mathbf{i}}+y \hat{\mathbf{j}}$
- The velocity vector can be found from the position vector

$$
\overrightarrow{\mathbf{v}}=\frac{d \overrightarrow{\mathbf{r}}}{d t}=v_{x} \hat{\mathbf{i}}+v_{y} \hat{\mathbf{j}}
$$

- Since acceleration is constant, we can also find an expression for the velocity as a function of time: $\overrightarrow{\mathbf{v}}_{f}=\overrightarrow{\mathbf{v}}_{i}+\overrightarrow{\mathbf{a}} t$

Kinematic Equations, 3

- The position vector can also be expressed as a function of time:
- $\overrightarrow{\mathbf{r}}_{f}=\overrightarrow{\mathbf{r}}_{i}+\overrightarrow{\mathbf{v}}_{i} t+1 / 2 \overrightarrow{\mathbf{a}} t^{2}$
- This indicates that the position vector is the sum of three other vectors:
- The initial position vector
- The displacement resulting from the initial velocity
- The displacement resulting from the acceleration

Kinematic Equations, Graphical Representation of Final Velocity

- The velocity vector can be represented by its components
- $\overrightarrow{\mathbf{v}}_{f}$ is generally not along the direction of either $\overrightarrow{\mathbf{v}}_{i}$ or $\overrightarrow{\mathbf{a}}$

Kinematic Equations, Graphical Representation of Final Position

- The vector representation of the position vector
- $\overrightarrow{\mathbf{r}}_{f}$ is generally not along the same direction as $\overrightarrow{\mathbf{v}}_{i}$ or as \vec{a}
- $\overrightarrow{\mathbf{v}}_{f}$ and $\overrightarrow{\mathbf{r}}_{f}$ are generally not in the same direction

Graphical Representation Summary

- Various starting positions and initial velocities can be chosen
- Note the relationships between changes made in either the position or velocity and the resulting effect on the other

(a)

Lecture Quiz

- A boy on a skate board skates off a horizontal bench at a velocity of $10 \mathrm{~m} / \mathrm{s}$. One tenth of a second after he leaves the bench, to two significant figures, the magnitudes of his velocity and acceleration are:
A. $\quad 10 \mathrm{~m} / \mathrm{s} ; 9.8 \mathrm{~m} / \mathrm{s}^{2}$.
B. $\quad 9.0 \mathrm{~m} / \mathrm{s} ; 9.8 \mathrm{~m} / \mathrm{s}^{2}$.
C. $\quad 9.0 \mathrm{~m} / \mathrm{s} ; 9.0 \mathrm{~m} / \mathrm{s}^{2}$.
D. $\quad 1.0 \mathrm{~m} / \mathrm{s} ; 9.0 \mathrm{~m} / \mathrm{s}^{2}$.
E. $\quad 1.0 \mathrm{~m} / \mathrm{s} ; 9.8 \mathrm{~m} / \mathrm{s}^{2}$.

Projectile Motion

- An object may move in both the x and y directions simultaneously
- The form of two-dimensional motion we will deal with is called projectile motion

Assumptions of Projectile Motion

- The free-fall acceleration is constant over the range of motion
- It is directed downward
- This is the same as assuming a flat Earth over the range of the motion
- It is reasonable as long as the range is small compared to the radius of the Earth
- The effect of air friction is negligible
- With these assumptions, an object in projectile motion will follow a parabolic path
- This path is called the trajectory

Projectile Motion Diagram

Clicker Question

If a baseball player throws a ball with a fixed initial speed, but with variable angles, the ball will move furthest if the angle from horizontal direction is:
A: 0 degrees
B: 30 degrees
C: 45 degrees
D: 60 degrees
E: 90 degrees

Analyzing Projectile Motion

- Consider the motion as the superposition of the motions in the x - and y-directions
- The actual position at any time is given by:

$$
\overrightarrow{\mathbf{r}}_{f}=\overrightarrow{\mathbf{r}}_{i}+\overrightarrow{\mathbf{v}}_{i} t+1 / 2 \overrightarrow{\mathbf{g}} t^{2}
$$

- The initial velocity can be expressed in terms of its components
- $\mathrm{v}_{x i}=\mathrm{v}_{i} \cos \theta$ and $\mathrm{v}_{y i}=\mathrm{v}_{i} \sin \theta$
- The x-direction has constant velocity

$$
a_{x}=0
$$

- The y-direction is free fall
- $a_{y}=-g$

Effects of Changing Initial Conditions

- The velocity vector components depend on the value of the initial velocity
- Change the angle and note the effect
- Change the magnitude and note the effect

Analysis Model

- The analysis model is the superposition of two motions
- Motion of a particle under constant velocity in the horizontal direction
- Motion of a particle under constant acceleration in the vertical direction
- Specifically, free fall

Projectile Motion Implications

Range and Maximum Height a Projectile

- When analyzing projectile motion, two
characteristics are of special interest
- The range, R, is the horizontal distance of the projectile
- The maximum height the projectile reaches is h

The y-component of the velocity is zero at the maximum height of the trajectory

- The acceleration stays the same throughout the trajectory

More About the Range of a Projectile

Non-Symmetric Projectile Motion

- Follow the general rules for projectile motion
- Break the y-direction into parts
- up and down or
- symmetrical back to initial height and then the rest of the height
- Apply the problem solving process to determine and solve the necessary equations
- May be non-symmetric in other ways

Range of a Projectile, final

- The maximum range occurs at $\theta_{i}=45^{\circ}$
- Complementary angles will produce the same range
- The maximum height will be different for the two angles
- The times of the flight will be different for the two angles

Uniform Circular Motion

- Uniform circular motion occurs when an object moves in a circular path with a constant speed
- The associated analysis motion is a particle in uniform circular motion
- An acceleration exists since the direction of the motion is changing
- This change in velocity is related to an acceleration
- The velocity vector is always tangent to the path of the object

Clicker Question	
A particle is undergoing constant-speed circular	
motion, which of the following statements is	
correct?	
A. The motion velocity is a constant.	
B. The velocity is perpendicular to acceleration.	
C. The velocity is parallel to the displacement.	
D. The acceleration is perpendicular to displacement.	
E. The acceleration is perpendicular to the plane of	
	motion.

Changing Velocity in Uniform Circular Motion

- The change in the velocity vector is due to the change in direction

(b)
- The vector diagram shows $\overrightarrow{\mathbf{v}}_{f}=\overrightarrow{\mathbf{v}}_{i}+\Delta \overrightarrow{\mathbf{v}}$

Centripetal Acceleration

- The acceleration is always perpendicular to the path of the motion
- The acceleration always points toward the center of the circle of motion
- This acceleration is called the centripetal acceleration

\qquad

Centripetal Acceleration, cont

- The magnitude of the centripetal acceleration vector is given by

$$
a_{C}=\frac{v^{2}}{r}
$$

- The direction of the centripetal acceleration vector is always changing, to stay directed toward the center of the circle of motion

Period

- The period, T, is the time required for one complete revolution
- The speed of the particle would be the circumference of the circle of motion divided by the period
- Therefore, the period is defined as

$$
T \equiv \frac{2 \pi r}{v}
$$

Total Acceleration

- The tangential acceleration causes the change in the speed of the particle
- The radial acceleration comes from a change in the direction of the velocity vector

Tangential Acceleration

- The magnitude of the velocity could also be changing
- In this case, there would be a tangential acceleration
- The motion would be under the influence of both tangential and centripetal accelerations
- Note the changing acceleration vectors

Total Acceleration, equations

- The tangential acceleration: $a_{t}=\left|\frac{d v}{d t}\right|$
- The radial acceleration: $a_{r}=-a_{C}=-\frac{v^{2}}{r}$
- The total acceleration:
- Magnitude $a=\sqrt{a_{r}^{2}+a_{t}^{2}}$
- Direction
- Same as velocity vector if v is increasing, opposite if v is decreasing

Relative Velocity

- Two observers moving relative to each other generally do not agree on the outcome of an experiment
- However, the observations seen by each are related to one another
- A frame of reference can described by a Cartesian coordinate system for which an observer is at rest with respect to the origin

Different Measurements, example

- Observer A measures point P at +5 m from the origin

(a)
- Observer B measures point P at +10 m from the origin
- The difference is due to the different frames of reference being used

(b)

Different Measurements, another example

- The man is walking on the moving beltway
- The woman on the beltway sees the man walking at his normal walking speed
- The stationary woman sees the man walking at a much higher speed
- The combination of the speed of the beltway and the walking
- The difference is due to the relative velocity of their frames of reference

- Reference frame S_{A} is stationary
- Reference frame S_{B} is moving to the right relative to S_{A} at $\overrightarrow{\mathbf{v}}_{A B}$
- This also means that S_{A} moves at $-\overrightarrow{\mathbf{v}}_{B A}$ relative to S_{B}
- Define time $t=0$ as that time when the origins coincide

Relative Velocity, equations

- The positions as seen from the two reference frames are related through the velocity
- $\overrightarrow{\mathbf{r}}_{P A}=\overrightarrow{\mathbf{r}}_{P B}+\overrightarrow{\mathbf{v}}_{B A} t$
- The derivative of the position equation will give the velocity equation
- $\overrightarrow{\mathbf{u}}_{P A}=\overrightarrow{\mathbf{u}}_{P B}+\overrightarrow{\mathbf{v}}_{B A}$
$-\overrightarrow{\mathbf{u}}_{P A}$ is the velocity of the particle P measured by observer A
- $\overrightarrow{\mathbf{u}}_{P B}$ is the velocity of the particle P measured by observer B
- These are called the Galilean transformation equations

Acceleration in Different Frames of Reference

- The derivative of the velocity equation will give the acceleration equation
- The acceleration of the particle measured by an observer in one frame of reference is the same as that measured by any other observer moving at a constant velocity relative to the first frame.

