

Sir Isaac Newton

- 1642 - 1727
- Formulated basic laws of mechanics
- Discovered Law of Universal Gravitation
- Invented form of calculus
- Many observations dealing with light and optics

Fundamental Forces

- Gravitational force
- Between objects
- Electromagnetic forces
- Between electric charges
- Nuclear force
- Between subatomic particles
- Weak forces
- Arise in certain radioactive decay processes
- Note: These are all field forces

More About Forces

- A spring can be used to calibrate the magnitude of a force
- Doubling the force causes double the reading on the spring
- When both forces are applied, the reading is three times the initial reading

Newton's First Law

- If an object does not interact with other objects, it is possible to identify a reference frame in which the object has zero acceleration
- This is also called the law of inertia
- It defines a special set of reference frames called inertial frames
- We call this an inertial frame of reference

Newton's First Law Alternative Statement

- In the absence of external forces, when viewed from an inertial reference frame, an object at rest remains at rest and an object in motion continues in motion with a constant velocity
- Newton's First Law describes what happens in the absence of a force
- Does not describe zero net force
- Also tells us that when no force acts on an object, the acceleration of the object is zero

Inertia and Mass

- The tendency of an object to resist any attempt to change its velocity is called inertia
- Mass is that property of an object that specifies how much resistance an object exhibits to changes in its velocity
- Masses can be defined in terms of the accelerations produced by a given force acting on them:

$$
m_{1} / m_{2} \equiv a_{2} / a_{1}
$$

- The magnitude of the acceleration acting on an object is inversely proportional to its mass

Mass vs. Weight

- Mass and weight are two different quantities
- Weight is equal to the magnitude of the gravitational force exerted on the object
- Weight will vary with location
- Example:
- $\mathrm{w}_{\text {earth }}=180 \mathrm{lb} ; \mathrm{w}_{\text {moon }} \sim 30 \mathrm{lb}$
- $m_{\text {earth }}=2 \mathrm{~kg} ; \mathrm{m}_{\text {moon }}=2 \mathrm{~kg}$

S

Clicker Question

What is the gravitational acceleration at the surface of the Moon?
A. $\quad 9.8 \mathrm{~m} / \mathrm{s}^{2}$
B. $\quad 1.63 \mathrm{~m} / \mathrm{s}^{2}$
C. $58.8 \mathrm{~m} / \mathrm{s}^{2}$
D. $0 \mathrm{~m} / \mathrm{s}^{2}$
E. $\quad 4.9 \mathrm{~m} / \mathrm{s}^{2}$
Newton's Second LaW

- When viewed from an inertial reference frame, the
acceleration of an object is directly proportional to
the net force acting on it and inversely proportional
to its mass
• Force is the cause of change in motion, as measured by
the acceleration
Algebraically,

\quad| $\sum \overrightarrow{\mathbf{a}} \propto \frac{\sum}{m}$ |
| :--- |
| - With a proportionality constant of 1 and speeds much lower |
| than the speed of light |

More About Newton's Second Law

- \sum Fis the net force
- This is the vector sum of all the forces acting on the object
- Newton's Second Law can be expressed in terms of components:
- $\Sigma F_{x}=m a_{x}$
- $\Sigma F_{y}=m a_{y}$
- $\Sigma F_{z}=m a_{z}$

- The SI unit of force is the newton (N)
- $1 \mathrm{~N}=1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}$
- The US Customary unit of force is a pound (lb)
- $1 \mathrm{lb}=1$ slug.ft $/ \mathrm{s}^{2}$
- $1 \mathrm{~N} \sim 1 / 4 \mathrm{lb}$

Gravitational Force

- The gravitational force, $\overrightarrow{\mathrm{F}}_{g}$, is the force that the earth exerts on an object
- This force is directed toward the center of the earth
- From Newton's Second Law
- $\overrightarrow{\mathbf{F}}_{g}=m \overrightarrow{\mathbf{g}}$
- Its magnitude is called the weight of the object
- Weight $=\mathrm{F}_{g}=m g$

Lecture Quiz

- A ball is thrown horizontally from the top of a building 0.10 km high. The ball strikes the ground at a point 65 m horizontally away from and below the point of release. What is the speed of the ball just before it strikes the ground?
A. $43 \mathrm{~m} / \mathrm{s}$
B. $47 \mathrm{~m} / \mathrm{s}$
C. $39 \mathrm{~m} / \mathrm{s}$
D. $36 \mathrm{~m} / \mathrm{s}$
E. 14 m/s

Newton's Third Law

- If two objects interact, the force $\overrightarrow{\mathrm{F}}_{12}$ exerted by object 1 on object 2 is equal in magnitude and opposite in direction to the force \vec{F}_{21} exerted by object 2 on object 1
- $\overrightarrow{\mathbf{F}}_{12}=-\vec{F}_{21}$
- Note on notation: $\overrightarrow{\mathrm{F}}_{A B}$ is the force exerted by A on B

Newton's Third Law, Alternative Statements

- Forces always occur in pairs
- A single isolated force cannot exist
- The action force is equal in magnitude to the reaction force and opposite in direction
- One of the forces is the action force, the other is the reaction force
- It doesn't matter which is considered the action and which the reaction
- The action and reaction forces must act on different objects and be of the same type

Action-Reaction Examples, 1

- The force $\overrightarrow{\mathbf{F}}_{12}$ exerted by object 1 on object 2 is equal in magnitude and opposite in direction to $\overrightarrow{\mathbf{F}}_{21}$ exerted by object 2 on object 1
- $\overrightarrow{\boldsymbol{F}}_{12}=-\overrightarrow{\mathbf{F}}_{21}$

(a)

Action-Reaction Examples, 2

- The normal force (table on monitor) is the reaction of the force the monitor exerts on the table
- Normal means perpendicular, in this case
- The action (Earth on monitor) force is equal in magnitude and opposite in direction to the reaction force, the force the monitor exerts on the Earth

Free Body Diagram

- In a free body diagram, you want the forces acting on a particular object
- Model the object as a particle
- The normal force and the force of gravity are the forces that act on the monitor

(b)
\qquad

Free Body Diagram, cont.

- The most important step in solving problems involving Newton's Laws is to draw the free body diagram
- Be sure to include only the forces acting on the object of interest
- Include any field forces acting on the object
- Do not assume the normal force equals the weight

Particles in Equilibrium

- If the acceleration of an object that can be modeled as a particle is zero, the object is said to be in equilibrium
- The model is the particle in equilibrium model
- Mathematically, the net force acting on the object is zero

$$
\begin{aligned}
& \sum \overrightarrow{\mathbf{F}}=0 \\
& \sum F_{x}=0 \text { and } \sum F_{y}=0
\end{aligned}
$$

Equilibrium, Example 1a

- A lamp is suspended from a chain of negligible mass
- The forces acting on the lamp are
- the downward force of gravity
- the upward tension in the chain
- Applying equilibrium gives
$\sum F_{y}=0 \rightarrow T-F_{g}=0 \rightarrow T=F_{g}$

(b)

Equilibrium, Example 1b

- $\overrightarrow{\mathbf{T}}$ and $\overrightarrow{\mathbf{F}}_{g}$
- Not an action-reaction pair
- Both act on the lamp
- \mathbf{T} and \mathbf{T}^{\prime}
- Action-reaction forces
- Lamp on chain and chain on lamp
- $\overrightarrow{\mathbf{T}}^{\prime}$ and $\overrightarrow{\mathbf{T}}{ }^{\prime}$
- Action-reaction forces
- Chain on ceiling and ceiling on chain
- Only the forces acting on the lamp are included in the free body diagram

(b)

Equilibrium, Example 2a

- Example 5.4
- Conceptualize the traffic light
- Assume cables don't break
- Nothing is moving
- Categorize as an equilibrium problem
- No movement, so acceleration is zero
- Model as a particle in equilibrium

(a)

Equilibrium, Example 2b

- Analyze

- Need two free-body diagrams
- Apply equilibrium equation to the light
- Apply equilibrium equations to the knot

Equilibrium, Example 2 c

- Analyze, cont.
- Find T_{3} from applying equilibrium in the y-direction to the light
- Find T_{1} and T_{2} from applying equilibrium in the x and y-directions to the knot
- Finalize
- Think about different situations and see if the results are reasonable

Particles Under a Net Force

- If an object that can be modeled as a particle experiences an acceleration, there must be a nonzero net force acting on it
- Model is particle under a net force model
- Draw a free-body diagram
- Apply Newton's Second Law in component form

Newton's Second Law, Example 1a

- Forces acting on the crate:
- A tension, acting through the rope, is the magnitude of force \mathbf{T}
- The gravitational force, $\overrightarrow{\mathbf{F}}_{g}$
- The normal force, $\overrightarrow{\mathbf{n}}$, exerted by the floor
(a)

Note About the Normal Force

- The normal force is not always equal to the gravitational force of the object
- For example, in this case $\sum F_{y}=n-F_{g}-F=0$ and $n=F_{g}+F$
- $\overrightarrow{\mathbf{n}}$ may also be less than $\overrightarrow{\mathbf{F}}_{g}$

Newton's Second Law, Example 1b

- Apply Newton's Second Law in component form:
$\sum F_{x}=T=m a_{x}$

$$
\sum F_{y}=n-F_{g}=0 \rightarrow n=F_{g}
$$

- Solve for the unknown(s)
- If the tension is constant, then a is constant and the kinematic equations can be used to more fully describe the motion of the crate

Inclined Planes

- Forces acting on the object:
- The normal force acts perpendicular to the plane
- The gravitational force acts straight down
- Choose the coordinate system with x along the incline and y perpendicular to the incline
- Replace the force of gravity with its components

Multiple Objects, Conceptualize

- Observe the two objects in contact
- Note the force
- Calculate the
 acceleration
- Reverse the direction of the applied force and repeat

Multiple Objects, Example 2 Atwood's Machine

- Forces acting on the objects:
- Tension (same for both objects, one string)
- Gravitational force
- Each object has the same acceleration since they are connected
- Draw the free-body diagrams
- Apply Newton's Laws
- Solve for the unknown(s)

\qquad

Problem-Solving Hints
 Newton's Laws

- Conceptualize
- Draw a diagram
- Choose a convenient coordinate system for each object
- Categorize
- Is the model a particle in equilibrium?
- If so, $\Sigma F=0$
- Is the model a particle under a net force?
- If so, $\Sigma F=m a$

Problem-Solving Hints
 Newton's Laws, cont

- Analyze
- Draw free-body diagrams for each object
- Include only forces acting on the object
- Find components along the coordinate axes
- Be sure units are consistent
- Apply the appropriate equation(s) in component form
- Solve for the unknown(s)
- Finalize
- Check your results for consistency with your free-body diagram
- Check extreme values

