

Lecture Quiz 1

You have a machine which can accelerate pucks on frictionless ice. Starting from rest, the puck travels a distance x in time t when force F is applied. If force $3 F$ is applied, the distance the puck travels in time t
is:

- A. x
- B. 1.5 x
- C. $3 x$
- D. 4.5 x
- E. $9 x$

Forces of Friction, cont.

- Friction is proportional to the normal force
- $f_{s} \leq \mu_{\mathrm{s}} n$ and $f_{k}=\mu_{k} n$
- μ is the coefficient of friction
- These equations relate the magnitudes of the forces, they are not vector equations
- For static friction, the equals sign is valid only at impeding motion, the surfaces are on the verge of slipping
- Use the inequality if the surfaces are not on the verge of slipping

Forces of Friction, final

- The coefficient of friction depends on the surfaces in contact
- The force of static friction is generally greater than the force of kinetic friction
- The direction of the frictional force is opposite the direction of motion and parallel to the surfaces in contact
- The coefficients of friction are nearly independent of the area of contact

Kinetic Friction

- The force of kinetic friction acts when the object is in motion
- Although μ_{k} can vary with speed, we shall neglect any such variations
- $f_{k}=\mu_{k} n$

(b)
(b)

Explore Forces of Friction

- Vary the applied force
- Note the value of the frictional force
- Compare the values
- Note what happens when the can starts to move

Some Coefficients of Friction

Coefficients of Friction		
	μ,	μ_{3}
Rubber on concrete	1.0	0.8
Steel on steel	0.74	0.57
Aluminum on steel	0.61	0.47
Glass on glas	0.94	0.4
Copper onsteel	0.53	0.36
Wood on wood	0.25-0.5	0.2
Waxed wood on wet snow	0.14	0.1
Waxed wood on dry mow	-	0.04
Meral on metal (lubricated)	0.15	0.06
Teflon on Teflon	0.04	0.04
Ice on ice	0.1	0.03
Synowial joins in humans	0.01	0.009
Side Al values are approximne. to mane caves the coetlikirat of fricion canexceed 1.		

Friction in Newton's Laws

 Problems- Friction is a force, so it simply is included in the $\sum \vec{F}$ in Newton's Laws
- The rules of friction allow you to determine the direction and magnitude of the force of friction

Friction, Example 3

- Friction acts only on the object in contact with another surface
- Draw the free-body diagrams
- Apply Newton's Laws as in any other multiple object system problem

Clicker Question

Two blocks with different masses, $\mathbf{M 1}=1 \mathrm{~kg}$, and $\mathbf{M 2}=\mathbf{2 k g}$,, slide with the same constant speed on a smooth surface, then move onto a surface having friction coefficient μ_{k}.

Which stops in the shorter time?
A. M_{1}
B. M_{2}
C. Both stop in the same time
D. Cannot be determined

Lecture Quiz 2

- Two people, each of 70 kg mass, are riding in an elevator. One is standing on the floor. The other is hanging on a rope suspended from the ceiling. Compare the force F1 the floor exerts on the first person to the force F2 the rope exerts on the second person. Which statement is correct?
A. They are equal and opposite in direction.
B. They are equal and have the same direction.
C. F1 is greater than F2, but they have the same direction.
D. F1 is greater than F2, but they have opposite directions.
E. F1 is less than F2, but they have the same direction.

Uniform Circular Motion, Acceleration

- A particle moves with a constant speed in a circular path of radius r with an acceleration:

$$
a_{c}=\frac{v^{2}}{r}
$$

- The centripetal acceleration, $\overrightarrow{\mathbf{a}}_{c}$ is directed toward the center of the circle
- The centripetal acceleration is always perpendicular to the velocity

Uniform Circular Motion, Force

- A force, $\overrightarrow{\boldsymbol{F}}_{r}$, is associated with the centripetal acceleration
- The force is also directed toward the center of the circle
- Applying Newton's Second Law along the radial direction gives

$$
\sum F=m a_{c}=m \frac{v^{2}}{r}
$$

Conical Pendulum

- The object is in equilibrium in the vertical direction and undergoes uniform circular motion in the horizontal direction
- $\Sigma F_{y}=0 \rightarrow T \cos \theta=m g$
- $\sum F_{x}=T \sin \theta=m a_{c}$
- v is independent of m
$v=\sqrt{L g \sin \theta \tan \theta}$

(a)

Motion in a Horizontal Circle

- The speed at which the object moves depends on the mass of the object and the tension in the cord
- The centripetal force is supplied by the tension

$$
v=\sqrt{\frac{T r}{m}}
$$

When the ball reaches position B, which of the indicated directions most
A. 1
B. 2
.
E. 5

1
C. 3

A small ball is released from rest at position A and rolls down a vertical circular track under the influence of gravity.

Horizontal (Flat) Curve

- The force of static friction supplies the centripetal force
- The maximum speed at which the car can negotiate the curve is

$$
v=\sqrt{\mu_{\mathrm{s}} g r}
$$

- Note, this does not depend on the mass of the car

Banked Curve, 2

- The banking angle is independent of the mass of the vehicle
- If the car rounds the curve at less than the design speed, friction is necessary to keep it from sliding down the bank
- If the car rounds the curve at more than the design speed, friction is necessary to keep it from sliding up the bank

Loop-the-Loop, Part 2

- At the top of the circle (c), the force exerted on the object is less than its weight
$\sum F=n_{\text {top }}+m g=\frac{m v^{2}}{r}$
$n_{\text {top }}=m g\left(\frac{v^{2}}{r g}-1\right)$

Vertical Circle with NonUniform Speed

- The acceleration and force have tangential components
- $\overrightarrow{\mathbf{F}}_{r}$ produces the centripetal acceleration
- \vec{F}_{t} produces the tangential acceleration
- $\sum \overrightarrow{\mathbf{F}}=\sum \overrightarrow{\mathbf{F}}_{r}+\sum \overrightarrow{\mathbf{F}}_{t}$

- The gravitational force exerts a tangential force on the object
- Look at the components of F_{9}
- The tension at any point can be found
$T=m g\left(\frac{v^{2}}{R g}+\cos \theta\right)$

Top and Bottom of Circle

- The tension at the bottom is a maximum

$$
T=m g\left(\frac{v_{b o t}^{2}}{R g}+1\right)
$$

- The tension at the top is a minimum
$T=m g\left(\frac{v_{t o p}^{2}}{R g}-1\right)$
- If $T_{\text {top }}=0$, then $v_{\text {top }}=\sqrt{g R}$

