

Forces of Friction, final

- The coefficient of friction depends on the surfaces in contact
- The force of static friction is generally greater than the force of kinetic friction
- The direction of the frictional force is opposite the direction of motion and parallel to the surfaces in contact
- The coefficients of friction are nearly independent of the area of contact

Coefficients of Friction					
TABLE 5.1 Coefficients of Friction					
				μ,	μ_{k}
			Rubber on concrete	1.0	0.8
Steel on steel	0.74	0.57			
Aluminum on steel	0.61	0.47			
Glass on glass	0.94	0.4			
Copper on steel	0.53	0.36			
Wood on wood	0.25 - 0.5	0.2			
Waxed wood on wet snow	0.14	0.1			
Waxed wood on dry snow	_	0.04			
Metal on metal (lubricated)	0.15	0.06			
Teflon on Teflon	0.04	0.04			
Ice on ice	0.1	0.03			
Consult 1 I down by how was	0.01	0.003			

Clicker Question

Two blocks with different masses, M1=1kg, and M2=2kg,, slide with the same constant speed on a smooth surface, then move onto a surface having friction coefficient $\mu_{k}.$

Which stops in the shorter time?

A. M₁

- B. M_2
- C. Both stop in the same time
- D. Cannot be determined

E. F1 is less than F2 , but they have the same direction.

Uniform Circular Motion, Acceleration A particle moves with a constant speed in a

circular path of radius r with an acceleration:

$$a_c = \frac{v}{r}$$

- The centripetal acceleration, \vec{a}_{c} is directed toward the center of the circle
- The centripetal acceleration is always perpendicular to the velocity

