

Lecture Quiz

- The frictional force of the floor on a large suitcase is least when the suitcase is
A.pushed by a force parallel to the floor.
B. dragged by a force parallel to the floor.
C.pulled by a force directed at an angle θ above the floor.
D. pushed by a force directed at an angle θ into the floor.
E.turned on its side and pushed by a force parallel to the floor.

Introduction to Energy

- The concept of energy is one of the most important topics in science and engineering
- Every physical process that occurs in the Universe involves energy and energy transfers or transformations
- Energy is not easily defined

Energy Approach to Problems

- The energy approach to describing motion is particularly useful when Newton's Laws are difficult or impossible to use
- An approach will involve changing from a particle model to a system model
- This can be extended to biological organisms, technological systems and engineering situations

- The work, W, done on a system by an agent exerting a constant force on the system is the product of the magnitude F of the force, the magnitude Δr of the displacement of the point of application of the force, and $\cos \theta$, where θ is the angle between the force and the displacement vectors

Units of Work

- Work is a scalar quantity
- The unit of work is a joule (J)
- 1 joule $=1$ newton $\cdot 1$ meter
- $\mathrm{J}=\mathrm{N} \cdot \mathrm{m}$

Work, cont.

- $W=F \Delta r \cos \theta$
- The displacement is that of the point of application of the force
- A force does no work on the object if the force does not move through a displacement
- The work done by a force on a moving object is zero when the force applied is perpendicular to the displacement of its point of application

More About Work

- The system and the agent in the environment doing the work must both be determined
- The part of the environment interacting directly with the system does work on the system
- Work by the environment on the system
- Example: Work done by a hammer (interaction from environment) on a nail (system)
- The sign of the work depends on the direction of the force relative to the displacement
- Work is positive when projection of $\overrightarrow{\mathbf{F}}$ onto $\Delta \overrightarrow{\mathbf{r}}$ is in the same direction as the displacement
- Work is negative when the projection is in the opposite direction

Work Is An Energy Transfer

- This is important for a system approach to solving a problem
- If the work is done on a system and it is positive, energy is transferred to the system
- If the work done on the system is negative, energy is transferred from the system

Work Is An Energy Transfer, cont cont

- If a system interacts with its environment, this interaction can be described as a transfer of energy across the system boundary
- This will result in a change in the amount of energy stored in the system -

Clicker Question

- Assuming that the earth is moving around the sun with a uniform circular motion. The work done by the gravitation force on earth is:
A. Positive
B. Negative
c. Zero
D. Impossible to determine

Scalar Product of Two Vectors

- The scalar product of two vectors is written
as $\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}$
- It is also called the dot product
- $\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}} \equiv A B \cos \theta$
- θ is the angle between A and B
- Applied to work, this
 means
$W=F \Delta r \cos \theta=\overrightarrow{\mathbf{F}} \cdot \Delta \overrightarrow{\mathbf{r}}$

Scalar Product, cont

- The scalar product is commutative
- $\overrightarrow{\mathbf{A}} \overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{B}} \square \overrightarrow{\mathbf{A}}$
- The scalar product obeys the distributive law of multiplication - $\overrightarrow{\mathbf{A}}(\overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{C}})=\overrightarrow{\mathbf{A}} \overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{A}} \subset \overrightarrow{\mathbf{C}}$

Dot Products of Unit Vectors

- $\hat{\mathbf{i}} \cdot \hat{\mathbf{i}}=\hat{\mathbf{j}} \cdot \hat{\mathbf{j}}=\hat{\mathbf{k}} \cdot \hat{\mathbf{k}}=1$
$\hat{\mathbf{i}} \cdot \hat{\mathbf{j}}=\hat{\mathbf{i}} \cdot \hat{\mathbf{k}}=\hat{\mathbf{j}} \cdot \hat{\mathbf{k}}=0$
- Using component form with vectors:
$\overrightarrow{\mathbf{A}}=A_{x} \hat{\mathbf{i}}+A_{y} \hat{\mathbf{j}}+A_{z} \hat{\mathbf{k}}$
$\overrightarrow{\mathbf{B}}=B_{x} \hat{\mathbf{i}}+B_{y} \hat{\mathbf{j}}+B_{z} \hat{\mathbf{k}}$
$\overrightarrow{\mathbf{A}} \overrightarrow{\mathbf{B}}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}$

Work Done by a Varying Force

- Assume that during a very small displacement, $\Delta x, F$ is constant
- For that displacement, $W \sim F \Delta x$
- For all of the intervals, $W \approx \sum_{x_{i}}^{x_{f}} F_{x} \Delta x$

(a)

Work Done by a Varying Force, cont

- $\lim _{\Delta x \rightarrow 0} \sum_{x_{i}}^{x_{f}} F_{x} \Delta x=\int_{x_{i}}^{x_{t}} F_{x} d x$
- Therefore, $W=\int_{x_{i}}^{x_{t}} F_{x} d x$
- The work done is equal to the area under the curve between x_{i} and x_{f}

(b)

Work Done By Multiple Forces

- If more than one force acts on a system and the system can be modeled as a particle, the total work done on the system is the work done by the net force

$$
\sum W=W_{n e t}=\int_{x_{i}}^{x_{t}}\left(\sum F_{x}\right) d x
$$

- In the general case of a net force whose magnitude and direction may vary

$$
\sum W=W_{n e t}=\int_{x_{i}}^{x_{t}}\left(\sum \overrightarrow{\mathbf{F}}\right) d \overrightarrow{\mathbf{r}}
$$

Work Done By A Spring

- A model of a common physical system for which the force varies with position
- The block is on a horizontal, frictionless surface
- Observe the motion of the block with various values of the spring constant

Hooke's Law, final

- The force exerted by the spring is always directed opposite to the displacement from equilibrium
- The spring force is sometimes called the restoring force
- If the block is released it will oscillate back and forth between $-x$ and x

Clicker Question

- The work done by a spring to be compressed from $\mathrm{x}=0$ to $\mathrm{x}=\mathrm{a}$ is: $\mathrm{W}_{0}=-k \mathrm{k}^{2} / 2$. What is the work done by the same spring to be compressed from $x=a$ to $x=2 a$?
A. W_{0}
B. $2 \mathrm{~W}_{0}$
c. $3 W_{0}$
D. $4 W_{0}$
E. $5 W_{0}$

Work Done by a Spring

Work Done by a Spring, cont.

- Assume the block undergoes an arbitrary displacement from $x=x_{i}$ to $x=x_{f}$
- The work done by the spring on the block is

$$
W_{s}=\int_{x_{i}}^{x_{t}}(-k x) d x=\frac{1}{2} k x_{i}^{2}-\frac{1}{2} k x_{f}^{2}
$$

- If the motion ends where it begins, $\mathrm{W}=0$
- Identify the block as the system
- Calculate the work as the block moves from $x_{i}=-x_{\text {max }}$ to $x_{f}=0$ $W_{s}=\int_{x_{i}}^{x_{i}} F_{x} d x=\int_{-x_{\text {max }}}^{0}(-k x) d x=\frac{1}{2} k x_{\text {max }}^{2}$
- The total work done as the block moves from $-x_{\max }$ to $x_{\max }$ is zero
(d)

Spring with an Applied Force

- Suppose an external agent,
$F_{\text {app }}$, stretches the spring
- The applied force is equal and opposite to the spring force
- $F_{\text {app }}=-F_{s}=-(-k x)=k x$
- Work done by $F_{\text {app }}$ is equal to $-1 / 2 k x^{2}{ }_{\text {max }}$
- The work done by the applied force is

$$
W_{a p p}=\int_{x_{i}}^{x_{i}}(k x) d x=\frac{1}{2} k x_{i}^{2}-\frac{1}{2} k x_{i}^{2}
$$

$2 / 2$

.

Kinetic Energy, cont

- Calculating the work:
$W=\int_{x_{i}}^{x_{t}} \sum F d x=\int_{x_{i}}^{x_{t}} \operatorname{mad} d x$
$W=\int_{v_{i}}^{v_{t}} m v d v$
$\sum W=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}$
$W_{\text {net }}=K_{f}-K_{i}=\Delta K$

Clicker Question

In a symmetric projectile motion, the initial speed is fixed. When the object lands, the kinetic energy would be maximum, if the angle of this motion from horizontal is:
A. 0
B. 90 degrees
c. 30 degrees
D. 45 degrees
E. Does not matter

Work-Kinetic Energy Theorem

- The Work-Kinetic Energy Theorem states $\Sigma W=K_{f}-$ $K_{i}=\Delta K$
- When work is done on a system and the only change in the system is in its speed, the work done by the net force equals the change in kinetic energy of the system.
- The speed of the system increases if the work done on it is positive
- The speed of the system decreases if the net work is negative
- Also valid for changes in rotational speed

Work-Kinetic Energy Theorem - Example

- The normal and gravitational forces do no work since they are perpendicular to the direction of the displacement
- $W=F \Delta x$
- $W=\Delta K=1 / 2 m v_{f}^{2}-0$

Lecture Quiz

- When a car goes around a circular curve on a level road,
A. no frictional force is needed because the car simply follows the road.
B. the frictional force of the road on the car increases when the car's speed decreases.
C. the frictional force of the road on the car increases when the car's speed increases.
D. the frictional force of the road on the car increases when the car moves to the outside of the curve.
E. there is no net frictional force because the road and the car exert equal and opposite forces on each other.

