Physics 777

Lecture 0 Introduction of the Sun

Disk Photometer

65 cm Vacuum Reflector
25 cm Vacuum Refractor
15 cm Singer Eul Disk Telescope TON
7.5 cm Photometric Full Disk Telescope

15 cm Earthsh de Telescope GONG

http://www.bbso.njit.edu/

Big Bear Solar Observatory

MARK BELGERAL

2 27 Meter Dishes in the Owens Valley Solar Array (OVSA)

Unique in the World
Array Includes
3 (soon to be 5) 2
meter dishes
Frequency Agile
Multiple Baselines

Structure of the Sun

Temperature of Solar Atmosphere

Fig. 1.2. An illustrative model for the variation of the temperature with height in the solar atmosphere (Athay, 1976).

Temperature, Pressure and Density

BBSO White Light Image of Sun 8/20/1999

Sun's Temperature: **Center:** 15,000,000 K □ Surface: 4,000 K Corona: 5,000,000 K **Energy Source:** Nuclear Fusion **Energy Transport:** ■ Radiative to 0.7 R □ Convective 0.7-1.0 R

- Image from 8/20/1999 same day as the white light image
- Filaments and Prominences are cold, dark magnetized material held in magnetic basket above the Sun's visible surface –suspended in the corona
- Prominence bright against dark backdrop
- Hα sensitive to T=10,000
 K the chromosphere

Sun in UV (304 Å) – SOHO/EIT

- **8/20/1999**
- Satellite data used in concert with BBSO to understand Sun
- Still see filaments and prominences at T=80,000 K
- See Coronal holes
- See Brightness at Limb

Sun in EUV (284 Å) – SOHO/EIT

- **8/20/1999**
- See prominences and filaments dark against the now bright corona
- Temperature sensitivity near 1,500,000 K
- Filaments and prominences fading as corona brightens

8/19/1999

 Prominences and filaments now gone, but corona is very bright

- Temperature sensitivity about 4,000,000 K
- Higher temperature means sampling higher in the solar atmosphere

Multi-Temperature Vision of the Sun

Blue: EIT 171 A T=1.0 MK

Green: EIT 195 A T=1.5 MK

Red: EIT 284 A T=2.0 MK

Sun's Magnetic Field – KPNO

8/20/1999

 Magnetogram with bright and dark regions being opposite polarities of the lineof-sight magnetic field

 Filaments/Prominence s along the neutral line between opposing polarities

CaK Image

High Resolution Observations of a very strange spot

Granulation Mesogranule? Supergranulation Network Magnetic Fields Intranetwork Magnetic Fields Giant Cells? **5** Minute Oscillation (3 minute in chromosphere

Measurement of Magnetic Fields:

Zeeman effect

Longitudinal Zeeman Effect

BBSO Vector Magnetogram December 13, 2000 (I, V, Q and U)

Quiet Sun Magnetic Fields

High Resolution Halpha Image

Spicules

Fig. 1.13. Spicules as seen (a) at the limb in Hα and (b) near the limb in the wing of Hα outlining the network (© AURA Inc., Sacramento Peak observatory).

Filaments and Prominences

A Huge Prominence

4 June 1946: Ha photograph

Solar Eclipse

Solar Corona at Eclípse, 3 Nov 1994, Putre, Chile. High Altitude Observatory, NCAR, Boulder, Colorado, USA.

Fig. 1.4. White-light eclipse photographs of the corona taken during the eclipses of (a) 12 November 1966 and (b) 7 March, 1970, showing (1) prominence, (2) streamer, (3) coronal hole (courtesy G. Newkirk, High Altitude Observatory). Superimposed on the 1970 eclipse is a soft X-ray photograph of the inner corona from Skylab (courtesy A. Krieger, American Science and Engineering).

Solar Cycle:

Sunspot number 1620 –1996

Butterfly Diagram

The Sun in X-Ray Light

Solar Activity Minimum -- 1996 Solar Activity Maximum-- 2000

Prominence Eruption in Halpha BBSO SINGER, H-A

- **4/15/2001**
- Prominence eruption
- Coronal Mass Ejection (CME) may accompany some filament/prominence eruptions
- Earth-directed CMEs can have geomagnetic effects

2001APR15 21:30:25

Two Ribbon Flare

Light Curves of Flares

asuda flare: hard X-ray source above the loop top (Masuda et al. 1994)

Big Bear Solar Observatory

Another CME

The Sun-Earth Connection

Space Weather Effects

Two Major Effects of Space Weather

Geo-Magnetic Storm
SEP (Solar Energetic Particle)

LFFF (Linear Force Free Field) Extrapolation, 2/17/2000

LASCO C3 Movie, 2/17/2000

ACE Data, 2/17/2000

LASCO C2, 7/14/2000

ACE Data, 7/14/2000

Cartoon to Demonstrate two Events (top, 2/17/2000, bottom, 7/14/2000)

