PHYS 777
Plasma Physics and Magnetohydrodynamics

2004 Fall
Instructor: Dr. Haimin Wang

Lecture 3

Magneto hydrostatics



Force Equation (2-21)
Vv

— =-VP+xB+pg
P V7 J Pg
: Vv
magnetohydrostatics means v, =0
—VP+jxB+pg=0
V xB . P
= VxB V.B—0 o= mpP
Y7 kT
define a coordinate along magnetic field lines (s)
I P
jxB=0 —d—:pgc0s9
ds
P
oscosl = oz ar =—pg
dz
z dz
P=P exp P =P(z=0)
* A(z2)
A(z) = kT(z) = F Scale Height

e rE P2/18



if A 1s a constant P =Pe 7'M
g = 80 51 ge = 274 m/s?
Fo = 6.96 x10° m

A=50T(1) m
o
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Fig. 3.1. A magnetié field line inclined at 6 to the vertical z-axjs. Distance 5 is measured along the field
line and p,, is the pressure at the reference height 2 = 0.
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where p,, is the base pressure (at z = 0) which may vary from one field line to another;

also
Alz) = K2 1) ( P RT"}) 3.7
mg Pa Hy

is the (pressure) scale-height, which represents the vertical distance over which the
pressure falls by a factor e. In terms of density Equation (3.6) becomes

P _Topoo | 1
T exp J. dz. (3.8)

Equation (3.6) shows that the pressure along a given magnetic field line decreases
exponentially with height, The rate of decrease depends on the temperature structure
as determined by the energy equation. [t is here that the magnetic field enters implicit-
ly, since the length of the ficld line depends on the magnetic structure and may influ-
ence both the conductive and heating terms in the energy balance, The corresponding
density variation follows from Equation (3.8). When the temperature increases with
height the density decreases faster than the pressure; but, when the temperature falls
with height, the density may ¢ither increase or decrease locally depending on whether
the factor T~ ! or the exponential dominates in Equation (3.8).

For the particular case when the temperature is uniform along a field line (due to.
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eg. T=10k r=r, A =500km

T=10°k A=5x10"(1)? m
o

if structure height Scale height

o term can be 1ignored

it g=2
BO

1, pressure term can be dropped as well

then we have jxB=0  force - free condition
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pure vertical fields

2
0= _9 (P+ B—) solutions are same as above
Ox 21
2
P+ 5 _ f(z) dp =—pg density 1s not a function of x
21 dz

Horizontal field

B=B(2)x
d B’
0=——(P+—)—
dZ( 2ﬂ) P8

: B’
P:[})O _J- ez/A i(_)dz]e—z//\

0 dz 2u
P= })()e_Z/AB p _ poe—z/AB B= Boe—z/2AB

A, =(P,+B;/2u)/ p,g modified scale height
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Cylindrically Symmetric Fields

*=(0 B,(R),B,(R))
1dB, 1 d
=(0,—— dRaR R (RB,))

ignore g in force equation

dP d B,+B, B

iR 24 I+ /LR (3-16)
Field lines are given by

RA® dZ

B, B,

twist cD=jd<D=2f B
0

VA

D(R) = By 2L 4LL: pitch of field
R B,(R) @
Pure Axial Fields
R R<a
B - 2ma’
o =3
I
(27TR a
P +l y(i)z(az—Rz) R<a
P=<" 4""m’

P, R>a
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R<a gas pressure balances with magnetic pressure and tension

R>a gas pressure balances with tension
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Fig. 3.3. The nolation for a cylindrically symmelric Mtux (ube of length 2L.
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Fig. 34, The purely szimuthal magnetic field lines in ¢ section across a column of uniform cursens and
mdius a. P9/1 8



In lab, this configuration is called linear Pitch Relationship beween current | and

number of particles / unit length
1=("j.27RdR

N=| " 2 ARAR
0

12=8—”KTN —— Bennet’'s Relation

—_ —_

Force —Free Field usj=aB
e linear force free field

2 2 2
4 BatBry Bo g (3-16,P=0)

dR  2u
if « 1s constant, — linear force free
-~ VxB dB
J= . -—~=abB,
Y7, dR

B, =B,J,(aR) B, =B,J,(aR)

J, and J, are Bessel functions
e Non-linear if B=fR) B, =-+r%L
2 dR

B’ =B’-B; f= Lz gives pure azimuthal fields
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Another example: Uniform - twist field
_ B®R/2L
1+ ®*R*/(2L)
BO
BZ = 2p2 2
1+®°R°/(2L)

Magnetostatic Fields

dP d(32+32) B,
dR dR  2u ,u

one simple solution --- uniform twist
B, B - DRB,
1+R*/a* *o2L
[CDa /(2L)* —-1]B;
(1+R*/a*)2u
Another simple solution --- non - uniform twist
B, =B,
2LB D,

D(R) =" =
() RB, 1+R*/a’

Z:

P(R) =

: B, .
Effect of Expanding a tube : —* increases.
Z
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Fig. 3.5 Magnetic field lines 1t two radii for the uniform-twisi field,

- R
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8, @) B,iR
A

{a)
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Fig 38 (a) The radia) expansion of & twisted Nux tube

of azimuthal flux in the wides part of & Mux tube.

from radius o 10 radius 4. (b) The concentration
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Current — Free Fields (potential fields)
.7=0=V><Z§/,u

—

V2B =0 B=VY¥Y Y scalar magnetic potential

V*¥ =0 ---Laplace Equation

this 1s a very likely situation on the Sun

general solution
0 /

Y= Z Z (a,r' +b,r"")P"(Cos O™
(=0 m=—1

In term of associated Legendre Polynomial

Constants are determined by boundary conditions. Many codes have been developed. e.g. Fig 3.7.
Use observed surface magnetic fields as boundary condition.

Force-Free Fields

force balance JxB=0 j= vxB
7

VxB=aB a=0, current-free

take the divergence

(B-V)a=0 B lies on surface of constant &
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Fig. 3.7. A ‘hairy ball’, indicating potential magnetic ficld lines in the solar corona for 12 November 1906,
culeulated by Lhe Alischuler- Newkirk code and superimposed on the echpse photograph fcourtesy O
Mewkick, High Alugude Observiloryl.

Pneuman {1976) employing a finite-difference method. Both methods yield similar
solutions for the large-scale field at two solar radii. The Adams-Pneuman code
possesses uniform accuracy at all heights, but, in order to treat small-scale surface
lestures with the same accuracy, the Allschuler-Mewkirk program needs 1o employ
many morethan the original nine polynomials. A much faster code has been developed
by Riesebieter and Neubauer (1979), who use erthogonality relations of the spherical
harmonics to determine recursion formulae for the harmonic coellicients. {The effect
of a non-spherical source surface has been incorporated by Levine et al (1982)]
Limitations on these global calculations are the poor guality of data near the poles
and the fact that variations on a time shorter than the solar rotation period cannot be
studied.

Another ingenious code has been developed by Sakurai and Uchida (1977} for

modelling the global field from several active regions: it models them by a series of
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when « 1s constant - - linear force free
ﬁx(ﬁxé) —aVxB
~V’B=a’ (V>+a*)B=0

General remarks

It can be shown that (Cowling 1976) if fields have minimum energy, must be force
free. However, force-free does not mean minimum energy.

Virial theorem

2 B+ yB,)B
[ gy - [LELIEI 4,

2u U

if one knows B 1n a surface, magnetic energy can be derived for a 3- D space

—

if jxB=0 B=0
force - free field must be anchored down some where in surface

An axisymmetric force free poloidal field must be current free
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Simple constant a force free solutions

Simplestsolution B =(0, B, (x), B,(x))
B +B; =B,
B, = B,Sindx B, = B,Cosax

other more complicated form

B, =4, Coskxe™" 4= é B,
1B, = 4, Coskx e” 5
l 1/2
\B. = B, Sinkx e” 4,=-( _F) B,

in cylindrical polars (R,¢,7)

B, = éBOJl (KR)e ™

N

2
B,=(1 —%)”ZBOJI (KR)e ™

B.=B.J,(KR)e™" J: Bessel function
z — H0Y0

Non-constant a force free fields

jxB=0, V-B=0 difficult non - linear equations

one approximation. B independent of y.

B, _A B B, __oA A :flux function
Oz g Ox
OB OB OB
va@_A+B 2 =0 yé_A__y@_A:
ox 7 ox 0z Ox Ox Oz
OB
viallipg P var ey
oz ' oz dA 2
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Fig. 38 Yertical and horizenial sections through & magnetic configuration described by Equation
thdd] with By « &1t oy be wsed to mode| o coronnal arende. The shaded Joop possessex a pressure that is
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Fig. L% Wertical and horizonlal seclions Lhreugh a magnetic struciure described by Equation {3.45). P1 7/1 8

Tl may mpdel 1he figld 1bave & supspat,



in cylindrical polar system

o> 10 0
-——+ b:)=0
(8R2 ROR oz 2 dA(Z )=
b
BR:_lG_A B¢=—¢ BZZLG_A
R 0Oz R R OR

Magnetic Diffusion

—

a—B=Vx(T7x1§)+77sz

ot

VxB=aB V-B=0 (B-V)a =0
if mediumis stationary V=0, & o =const
then V’B=-a’B

Z—f =—na’B — diffusion

%

B=B,e™"  j=je™
For non-constant «, Samplesolution:

: 0
B, =B,Cos¢ B =B,Sing o= —a—f:
¢ and V aredetermined by
W 0%, 0 _,
ot o’ ox
a¢ 2 X _
20+ S0 P18/18
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Homework

1. Estimate the scale heights in solar
photosphere, transition region and corona.

2. A vertical magnetic flux tube should expand
from photosphere to corona. If 1% of
photospheric area is occupied by the magnetic
fields, at what height, 100% of the surface area
Is occupied by magnetic fields?

3. Derive Bennett's relation, starting from
fundamental magnetohydrostatics equation
with cylindrical symmetry.
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